获取积分向量值
Posted
技术标签:
【中文标题】获取积分向量值【英文标题】:Get integrated vector values 【发布时间】:2014-12-20 16:17:05 【问题描述】:我正在尝试整合正弦函数。我的目标不仅是获得一定距离之间区域的价值,而且是综合课程的具体价值。
实现此目的的一种方法是使用 cumtrapz。我想使用积分或四边形获得相同的结果。所以我想知道是否有类似cumquad的东西?
我尝试为自己写一些东西,但它运行起来很慢,而且似乎比 cumtrapz 还要糟糕。稍后我想整合测量数据。所以它不会像正弦那样简单。
这是我当前的代码:
a = 0; b = 10;
x = a:0.1:b;
y = 2*sin(3*x);
pp = spline(x,y);
y2=zeros(1,length(y));
y3=zeros(1,length(y));
y2(1)=integral(@(x)ppval(pp,x),x(1),x(2));
y3(1)=integral(@(x)ppval(pp,x),x(1),x(2));
for a=2:(length(y)-1)
y2(a) = y2(a-1)+integral(@(x)ppval(pp,x),x(a-1),x(a));
y3(a) = y3(a-1)+quad(@(x)ppval(pp,x),x(a-1),x(a));
end
y4=cumtrapz(x,y);
% y5=cumsum(y);
plot(x,y)
hold on
plot(x,y2,'-ro')
plot(x,y3,'-kx')
plot(x,y4,'g')
syms x % compare with analytical result
ya=2*sin(3*x);
ya5=int(ya)+(2/3);
ezplot(x,ya5)
【问题讨论】:
cumsum
使用quad
计算的积分有什么问题?
对不起,我不明白
【参考方案1】:
使用integral
我认为没有办法让 MATLAB 返回沿路径的积分,因此您一次执行一个 Δx 的积分是正确的。
缓慢来自每个integral
调用的循环和随后的重新启动。
您可以通过将每个区间上的积分设置为向量值函数来避免循环。
数学
假设我们将 x 划分为 N-1 个区间,总共有 N 个边界,并将区间边界表示为 x n 其中 n ∈1,2,3...,N 使得 x1 ≤ x2 ≤ x3 ... ≤ xN。 那么区间上的任何积分都是
使用u-替代:
积分变为:
其中Δxn = xn - xn-1
代码
所以现在,我们可以通过指定下界xn-1,指定区间宽度Δx来对任意函数进行区间积分>,并从 0 整合到 1。
最好的部分是,如果下界和区间宽度是向量,我们可以根据 u 创建一个向量值函数,并让 integral
与选项 'ArrayValued' = true
集成。
x = a:0.1:b;
xnm1 = x(1:end-1);
dx = x(2:end) - xnm1;
fx = @(x) 2*sin(3*x);
f = @(u) dx .* fx(dx*u+xnm1);
y = cumsum([0,integral(@(u)f(u),0,1,'ArrayValued',true)]);
cumsum
说明了这样一个事实,即给定区间内的每个积分都需要将前一个区间的值添加到其中。
在我的机器上,这至少比循环版本快一个数量级,并且随着间隔计数的增加而变得更好。
使用ode45
使用也可以使用ode45
来执行集成。
它的效率不如integral
方法,但它在概念上可能更容易并且看起来更干净。
事实上,ode45
在需要返回与integral
相当的绝对误差时,比上面的积分方法慢了大约 10 倍。
a = 0;
b = 10;
% These options are necessary to approach the accuracy of integral
opt = odeset('RelTol',100*eps(),'AbsTol',eps());
sol = ode45(@(x,y) 2*sin(3*x),[a,b],0,opt);
x = a:0.01:b;
yint = deval(sol,x);
【讨论】:
以上是关于获取积分向量值的主要内容,如果未能解决你的问题,请参考以下文章