R Highcharter:Shiny on the fly 中的动态钻取
Posted
技术标签:
【中文标题】R Highcharter:Shiny on the fly 中的动态钻取【英文标题】:R Highcharter: dynamic drilldown in Shiny on the fly 【发布时间】:2019-08-05 16:48:01 【问题描述】:我正在尝试使用highcharter
和shiny
中的动态数据创建一个多层钻取图。在 SO 社区(向@K. Rohde 大喊)的帮助下,能够通过遍历所有可能的钻取来解决这个问题。我实际的闪亮应用程序将有数百个可能的向下钻取,我不想将这些额外的时间添加到应用程序中,而是使用addSingleSeriesAsDrilldown
即时创建向下钻取。不确定如何在 R 中使用它。
下面是我的问题的工作示例,循环遍历所有向下钻取的可能性:
library (shinyjs)
library (tidyr)
library (data.table)
library (highcharter)
library (dplyr)
library (shinydashboard)
library (shiny)
x <- c("Farm","Farm","Farm","City","City","City","Ocean","Ocean")
y <- c("Sheep","Sheep","Cow","Car","Bus","Bus","Boat","Boat")
z <- c("Bill","Tracy","Sandy","Bob","Carl","Newt","Fig","Tony")
a <- c(1,1,1,1,1,1,1,1)
dat <- data.frame(x,y,z,a)
header <- dashboardHeader()
body <- dashboardBody(
highchartOutput("Working"),
verbatimTextOutput("trial")
)
sidebar <- dashboardSidebar()
ui <- dashboardPage(header, sidebar, body)
server <- function(input, output, session)
output$Working <- renderHighchart(
#First Tier #Copied
datSum <- dat %>%
group_by(x) %>%
summarize(Quantity = sum(a)
)
datSum <- arrange(datSum,desc(Quantity))
Lvl1dfStatus <- tibble(name = datSum$x, y = datSum$Quantity, drilldown = tolower(name))
#Second Tier # Generalized to not use one single input
# Note: I am creating a list of Drilldown Definitions here.
Level_2_Drilldowns <- lapply(unique(dat$x), function(x_level)
# x_level is what you called 'input' earlier.
datSum2 <- dat[dat$x == x_level,]
datSum2 <- datSum2 %>%
group_by(y) %>%
summarize(Quantity = sum(a)
)
datSum2 <- arrange(datSum2,desc(Quantity))
# Note: The "drilldown" variable has to be unique, this is why we use level 1 plus level 2 names.
Lvl2dfStatus <- tibble(name = datSum2$y,y = datSum2$Quantity, drilldown = tolower(paste(x_level, name, sep = "_")))
list(id = tolower(x_level), type = "column", data = list_parse(Lvl2dfStatus))
)
#Third Tier # Generalized through all of level 2
# Note: Again creating a list of Drilldown Definitions here.
Level_3_Drilldowns <- lapply(unique(dat$x), function(x_level)
datSum2 <- dat[dat$x == x_level,]
lapply(unique(datSum2$y), function(y_level)
datSum3 <- datSum2[datSum2$y == y_level,]
datSum3 <- datSum3 %>%
group_by(z) %>%
summarize(Quantity = sum(a)
)
datSum3 <- arrange(datSum3,desc(Quantity))
Lvl3dfStatus <- tibble(name = datSum3$z,y = datSum3$Quantity)
# Note: The id must match the one we specified above as "drilldown"
list(id = tolower(paste(x_level, y_level, sep = "_")), type = "column", data = list_parse2(Lvl3dfStatus))
)
) %>% unlist(recursive = FALSE)
highchart() %>%
hc_xAxis(type = "category") %>%
hc_add_series(Lvl1dfStatus, "column", hcaes(x = name, y = y), color = "#E4551F") %>%
hc_plotOptions(column = list(stacking = "normal")) %>%
hc_drilldown(
allowPointDrilldown = TRUE,
series = c(Level_2_Drilldowns, Level_3_Drilldowns)
)
)
output$trial <- renderText(input$ClickedInput)
shinyApp(ui, server)
以下是使用addSingleSeriesAsDrilldown
的 R 代码示例,但我不确定如何应用它。我需要动态更改JS
字符串。
library(highcharter)
highchart() %>%
hc_chart(
events = list(
drilldown = JS("function(e)
var chart = this,
newSeries = [
color: 'red',
type: 'column',
stacking: 'normal',
data: [1, 5, 3, 4]
,
type: 'column',
stacking: 'normal',
data: [3, 4, 5, 1]
]
chart.addSingleSeriesAsDrilldown(e.point, newSeries[0]);
chart.addSingleSeriesAsDrilldown(e.point, newSeries[1]);
chart.applyDrilldown();
")
)
) %>%
hc_add_series(type = "pie", data= list(list(y = 3, drilldown = TRUE), list(y = 2, drilldown = TRUE))) %>%
hc_drilldown(
series = list()
)
【问题讨论】:
【参考方案1】:这个问题你得到了双重答案。有两种基本方法可以实现您的愿望。一种是使用 Highcharts 提供的向下钻取,即使您必须从 R 后端收集子系列。另一种是简单地替换 Highcharts 向下钻取并实现 R 驱动的向下钻取,仅使用 Highcharts 进行渲染。
由于它可能更容易消化,我会从后者开始。
Shiny 的钻取功能
忘记 Highcharts 可以进行向下钻取。您已经拥有了所需的一切,因为您知道如何添加一个事件广播器,它会在图表上的某个点被点击时告诉您。
为此,您真正使用了renderHighcharts
的反应性,并使用代表当前向下钻取的不同数据集重新渲染图表。该过程如下:单击“农场”列,您现在使用“农场”子集呈现图表。单击下一列,您构建更深的嵌套子集并呈现它。
Highcharts 提供的唯一一项您必须自己做的事情就是添加一个“返回”按钮以再次向上钻取。
下面的解决方案一开始可能会让人感到困惑,因为它由一些反应式表达式组成,这些表达式汇聚成一个反应式数据集,其中包含您当前的钻取状态。请注意,我们必须将当前的钻取状态存储在后端,以便能够向上钻取并钻取到更深的层次。
library (shinyjs)
library (tidyr)
library (data.table)
library (highcharter)
library (dplyr)
library (shinydashboard)
library (shiny)
x <- c("Farm","Farm","Farm","City","City","City","Ocean","Ocean")
y <- c("Sheep","Sheep","Cow","Car","Bus","Bus","Boat","Boat")
z <- c("Bill","Tracy","Sandy","Bob","Carl","Newt","Fig","Tony")
a <- c(1,1,1,1,1,1,1,1)
dat <- data.frame(x,y,z,a)
header <- dashboardHeader()
body <- dashboardBody(
actionButton("Back", "Back"),
highchartOutput("Working"),
verbatimTextOutput("trial")
)
sidebar <- dashboardSidebar()
ui <- dashboardPage(header, sidebar, body)
server <- function(input, output, session)
# To hold the current drilldown status as list, i.e. list("Farm", "Sheep")
state <- reactiveValues(drills = list())
# Reactive reacting to the above drill list, giving out a normalized data.frame (category, amount)
filtered <- reactive(
if (length(state$drills) == 0)
# Case no drills are present.
data.frame(category = dat$x, amount = dat$a)
else if (length(state$drills) == 1)
# Case only x_level drill is present.
x_level = state$drills[[1]]
sub <- dat[dat$x == x_level,]
data.frame(category = sub$y, amount = sub$a)
else if (length(state$drills) == 2)
# Case x_level and y_level drills are present.
x_level = state$drills[[1]]
y_level = state$drills[[2]]
sub <- dat[dat$x == x_level & dat$y == y_level,]
data.frame(category = sub$z, amount = sub$a)
)
# Since Drilldown from Highcharts is not used: Install own click handler that builds up the drill list.
observeEvent(input$ClickedInput,
if (length(state$drills) < 2)
# Push drill name.
state$drills <<- c(state$drills, input$ClickedInput)
)
# Since Drilldown from Highcharts is not used: Back button is manually inserted.
observeEvent(input$Back,
if (length(state$drills) > 0)
# Pop drill name.
state$drills <<- state$drills[-length(state$drills)]
)
output$Working <- renderHighchart(
# Using normalized names from above.
summarized <- filtered() %>%
group_by(category) %>%
summarize(Quantity = sum(amount))
summarized <- arrange(summarized, desc(Quantity))
tibbled <- tibble(name = summarized$category, y = summarized$Quantity)
# This time, click handler is needed.
pointClickFunction <- JS("function(event) Shiny.onInputChange('ClickedInput', event.point.name);")
highchart() %>%
hc_xAxis(type = "category") %>%
hc_add_series(tibbled, "column", hcaes(x = name, y = y), color = "#E4551F") %>%
hc_plotOptions(column = list(stacking = "normal", events = list(click = pointClickFunction)))
)
output$trial <- renderText(input$ClickedInput)
shinyApp(ui, server)
Highcharts 的下钻功能
这里的情况是,您需要将数据从后端发送到 javascript 以使用图表库中的 addSeriesAsDrilldown 方法。这以一种异步方式工作:Highcharts 提醒某些点被请求向下钻取(通过单击它)。然后后端必须计算相应的数据集,然后将数据集报告回 Highcharts 以便它可以被渲染。我们为此使用 CustomMessageHandler。
我们不会在原始 Highcharts 中添加任何向下钻取系列,但我们会告诉 Highcharts 在请求向下钻取时它必须发送什么关键字(向下钻取事件)。请注意,这不是点击事件,而是更专业的事件(仅在下钻可用时)。
我们发回的数据格式必须正确,所以在这里你需要了解一下 Highcharts 的 api(JS,不是 highcharter)。
创建向下钻取数据的方法有很多,所以我在这里编写了另一个更通用的函数。然而,最重要的是您使用的级别 ID 可用于确定我们当前所处的过滤级别。代码中有一些cmets来指出这些情况。
library (shinyjs)
library (tidyr)
library (data.table)
library (highcharter)
library (dplyr)
library (shinydashboard)
library (shiny)
x <- c("Farm","Farm","Farm","City","City","City","Ocean","Ocean")
y <- c("Sheep","Sheep","Cow","Car","Bus","Bus","Boat","Boat")
z <- c("Bill","Tracy","Sandy","Bob","Carl","Newt","Fig","Tony")
a <- c(1,1,1,1,1,1,1,1)
dat <- data.frame(x,y,z,a)
header <- dashboardHeader()
body <- dashboardBody(
highchartOutput("Working"),
verbatimTextOutput("trial")
)
sidebar <- dashboardSidebar()
ui <- dashboardPage(header, sidebar, body)
server <- function(input, output, session)
output$Working <- renderHighchart(
# Make the initial data.
summarized <- dat %>%
group_by(x) %>%
summarize(Quantity = sum(a))
summarized <- arrange(summarized, desc(Quantity))
tibbled <- tibble(name = summarized$x, y = summarized$Quantity)
# This time, click handler is needed.
drilldownHandler <- JS("function(event) Shiny.onInputChange('ClickedInput', event.point.drilldown);")
# Also a message receiver for later async drilldown data has to be set.
# Note in the JS: message.point is going to be the point ID. Highcharts addSeriesAsDrilldown need a point to attach
# the drilldown series to. This is retrieved via chart.get which takes the ID of any Highcharts Element.
# This means: IDs are kind of important here, so keep track of what you assign.
installDrilldownReceiver <- JS("function()
var chart = this;
Shiny.addCustomMessageHandler('drilldown', function(message)
var point = chart.get(message.point)
chart.addSeriesAsDrilldown(point, message.series);
);
")
highchart() %>%
# Both events are on the chart layer, not by series.
hc_chart(events = list(load = installDrilldownReceiver, drilldown = drilldownHandler)) %>%
hc_xAxis(type = "category") %>%
# Note: We add a drilldown directive (= name) to tell Highcharts that this has a drilldown functionality.
hc_add_series(tibbled, "column", hcaes(x = name, y = y, drilldown = name, id = name), color = "#E4551F") %>%
hc_plotOptions(column = list(stacking = "normal")) %>%
hc_drilldown(allowPointDrilldown = TRUE)
)
# Drilldown handler to calculate the correct drilldown
observeEvent(input$ClickedInput,
# We will code the drill levels to be i.e. Farm_Car. By that we calculate the next Sub-Chart.
levels <- strsplit(input$ClickedInput, "_", fixed = TRUE)[[1]]
# This is just for generalizing this function to work in all the levels and even be expandable to further more levels.
resemblences <- c("x", "y", "z")
dataSubSet <- dat
# We subsequently narrow down the original dataset by walking through the drilled levels
for (i in 1:length(levels))
dataSubSet <- dat[dat[[resemblences[i]]] == levels[i],]
# Create a common data.frame for all level names.
normalized <- data.frame(category = dataSubSet[[resemblences[length(levels) + 1]]], amount = dataSubSet$a)
summarized <- normalized %>%
group_by(category) %>%
summarize(Quantity = sum(amount))
summarized <- arrange(summarized, desc(Quantity))
tibbled <- tibble(name = summarized$category, y = summarized$Quantity)
# Preparing the names and drilldown directives for the next level below.
# If already in "Farm_Car", the name for column "Bob" will be "Farm_Car_Bob"
nextLevelCodes = lapply(tibbled$name, function(fac)
paste(c(levels, as.character(fac)), collapse = "_")
) %>% unlist
tibbled$id = nextLevelCodes
# This is dynamic handling for when there is no further drilldown possible.
# If no "drilldown" property is set in the data object, Highcharts will not let further drilldowns be triggered.
if (length(levels) < length(resemblences) - 1)
tibbled$drilldown = nextLevelCodes
# Sending data to the installed Drilldown Data listener.
session$sendCustomMessage("drilldown", list(
series = list(
type = "column",
name = paste(levels, sep = "_"),
data = list_parse(tibbled)
),
# Here, point is, as mentioned above, the ID of the point that triggered the drilldown.
point = input$ClickedInput
))
)
output$trial <- renderText(input$ClickedInput)
shinyApp(ui, server)
【讨论】:
哇,好棒的答案!!我将采用您的第一个解决方案,因为它更容易理解和复制。太感谢了!在过去的 2 天里,我一直在用头撞墙,试图弄清楚该怎么做。 @Kevin 我的荣幸。 解决方案 1 的唯一缺点是您失去了一些在 highcharter 中向下钻取所带来的平滑过渡,但总体而言它很棒! 真棒答案@K.Rohde :) 这也将帮助我做捷径@K. Rohde
谢谢。如果没有您的解决方案,我将无法解决我的问题。请参阅 SO 问题 -> ***.com/questions/55393013/…以上是关于R Highcharter:Shiny on the fly 中的动态钻取的主要内容,如果未能解决你的问题,请参考以下文章
带有hchart()函数的R Highcharter tickmarkPlacement
R Shiny on Ubuntu Server:用户无法在Windows平台中打开文件夹
如何在 R 中将 Highcharter 图表保存为 gif?