Hadoop:Reducer 不会发出正确的计算

Posted

技术标签:

【中文标题】Hadoop:Reducer 不会发出正确的计算【英文标题】:Hadoop: Redcuer doesn't emit correct claculation 【发布时间】:2021-06-01 03:23:32 【问题描述】:

我有以下应该计算 score = POS /(-1*sum(NEGs)) 的 Reducer 类(MapReduce 作业的一部分)。

其中POS 是一个正数,NEGs 是两个负数。总是这样。

例如,如果映射器的输入是:

<A, A>  -15.0
<A, A>  2.0
<A, A>  -15.0

预期的输出是:

<A, A>  0.06666666666666667

但是,它为每个输出记录输出infinity

<A, A>  Infinity

在调试时,如果我在 while 循环中添加了发出值的语句:

score.set(val);
context.write(key, score);

,它可以很好地打印结果,但会重复除法。所以我得到以下信息:

<A, A>  -15.0
<A, A>  2.0
<A, A>  -15.0
<A, A>  0.06666666666666667   # correct calculation (2/30)
<A, A>  0.0022222222222222222 # Not sure why it divids twice by 30 (2/30/30)!!

这是MyReducer

private static class MyReducer extends
        Reducer<Pair, DoubleWritable, Pair, DoubleWritable> 
    private DoubleWritable score = new DoubleWritable();
    int counter = 0;

    @Override
    public void reduce(Pair key, Iterable<DoubleWritable> values, Context context)
            throws IOException, InterruptedException 
        Iterator<DoubleWritable> iter = values.iterator();
        double nor = 0.0;
        double don = 0.0;

        double val;
        while (iter.hasNext()) 
            val = iter.next().get();
            if (val < 0)
                don += val*-1;
            else
                nor = val;
            //uncomment for debugging!
            //score.set(val);
            //context.write(key, score);
        

        score.set(nor / don);
        context.write(key, score);
    

谁能解释一下原因

如果我在 while 循环中没有发出任何东西,则发出无穷大 除以分母两次?

谢谢!

【问题讨论】:

【参考方案1】:

当然,在 Java 中表现滑稽的双精度数远非罕见,但在这种特殊情况下,双精度数的奇怪方式并不奇怪,至于它们在 Hadoop 术语中的兼容性。

首先,这种类型的 reduce 计算至关重要,只能在作业的 Reduce 阶段使用,而不能Combine 阶段使用> 阶段(如果有)。如果您已将此 reduce 计算设置为也作为组合器实现,您可以考虑取消设置此设置。这不是一个经验法则,但是 MapReduce 作业中存在很多错误,人们无法完全弄清楚为什么 reducer 会得到奇怪的数据或连续执行两次计算(就像你指出的那样出)。

但是,问题的可能罪魁祸首是,为了获得安全的双类型除法,您确实需要使用 type casting 才能获得正确的双类型结果。

为了展示这一点,我使用了一个基于您的输入数据并存储在\input 目录中的输入示例。每个唯一键都有一个正数和两个负数作为值(为了简单起见,这里将键设置为String),如下所示:

Α -15.0
Α 2.0
Α -15.0
Β -10.0
Β 9.0
Β -12.0
C -7.0
C 1.0
C -19.0
D -5.0
D 18.0
D -5.0
E -6.0
E 6.0
E -6.0

然后使用显式类型转换来计算每个分数,如下代码所示:

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.GenericOptionsParser;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoop.fs.FSDataOutputStream;
import org.apache.hadoop.mapreduce.lib.input.FileSplit;

import java.io.*;
import java.io.IOException;
import java.util.*;
import java.nio.charset.StandardCharsets;


public class ScoreComp 

    /* input:  <Character, Number>
     * output: <Character, Number>
     */
    public static class Map extends Mapper<Object, Text, Text, DoubleWritable> 
    
        public void map(Object key, Text value, Context context) throws IOException, InterruptedException 
        
            String record = value.toString();
            String[] parts = record.split(" "); // just split the lines into key and value

            // create key-value pairs from each line
            context.write(new Text(parts[0]), new DoubleWritable(Double.parseDouble(parts[1])));
        
    

    /* input:  <Character, Number>
     * output: <Character, Score>
     */
    public static class Reduce extends Reducer<Text, DoubleWritable, Text, DoubleWritable>
    
        public void reduce(Text key, Iterable<DoubleWritable> values, Context context) throws IOException, InterruptedException 
        
            double pos = 0.0;
            double neg = 0.0;

            // for every value of a unique key...
            for(DoubleWritable value : values)
            
                // retrieve the positive number and calculate the sum of the two negative numbers
                if(value.get() < 0)
                    neg += value.get();
                else
                    pos = value.get();
            

            // calculate the score based on the values of each key (using explicit type casting)
            double result = (double) pos / (-1 * neg);

            // create key-value pairs for each key with its score
            context.write(key, new DoubleWritable(result));
        
    


    public static void main(String[] args) throws Exception
    
        // set the paths of the input and output directories in the HDFS
        Path input_dir = new Path("input");
        Path output_dir = new Path("scores");

        // in case the output directory already exists, delete it
        Configuration conf = new Configuration();
        FileSystem fs = FileSystem.get(conf);
        if(fs.exists(output_dir))
            fs.delete(output_dir, true);

        // configure the MapReduce job
        Job scorecomp_job = Job.getInstance(conf, "Score Computation");
        scorecomp_job.setJarByClass(ScoreComp.class);
        scorecomp_job.setMapperClass(Map.class);
        scorecomp_job.setReducerClass(Reduce.class);    
        scorecomp_job.setMapOutputKeyClass(Text.class);
        scorecomp_job.setMapOutputValueClass(DoubleWritable.class);
        scorecomp_job.setOutputKeyClass(Text.class);
        scorecomp_job.setOutputValueClass(DoubleWritable.class);
        FileInputFormat.addInputPath(scorecomp_job, input_dir);
        FileOutputFormat.setOutputPath(scorecomp_job, output_dir);
        scorecomp_job.waitForCompletion(true);
    

您可以看到 /scores 目录中的 MapReduce 作业的结果在数学方面是有意义的(通过 HDFS 浏览器截取的屏幕截图):

【讨论】:

以上是关于Hadoop:Reducer 不会发出正确的计算的主要内容,如果未能解决你的问题,请参考以下文章

hadoop —— Reducer全排序

Hadoop 多文件输出 MultipleOutputFormat

hadoop reducer 是不是有输入超时?

Hadoop(十七)之MapReduce作业配置与Mapper和Reducer类

R 不会使用聚合函数正确计算均值

Hadoop学习之路(十七)MapReduce框架Partitoner分区