tensorflow对象检测中的checkpoint_dir和fine_tune_checkpoint有啥区别?
Posted
技术标签:
【中文标题】tensorflow对象检测中的checkpoint_dir和fine_tune_checkpoint有啥区别?【英文标题】:What is the difference between checkpoint_dir and fine_tune_checkpoint in tensorflow object detection?tensorflow对象检测中的checkpoint_dir和fine_tune_checkpoint有什么区别? 【发布时间】:2020-04-12 16:04:18 【问题描述】:我使用这个link 来学习 Windows 10 上的对象检测。
我准备了400张图片,分为两类(石头和汽车)。
然后我用这个命令训练:
cd E:\test\models-master\research\object_detection
python model_main.py --pipeline_config_path=training/ssd_mobilenet_v1_coco.config --model_dir=training/ --num_train_steps=10000
在object_detection/model_main.py
中,我看到一个名为checkpoint_dir
的参数。
但是我不知道如何使用checkpoint_dir
。如果我的模型训练到超过6000步,training
文件夹如下图所示:
然后我停止训练模型。当我想继续训练时,如何设置checkpoint_dir
?
我使用这个命令:
python model_main.py --pipeline_config_path=training/ssd_mobilenet_v1_coco.config -- model_dir=training/ --checkpoint_dir=training/ --num_train_steps=20000 --alsologtostderr
当我添加--checkpoint_dir=training/
时,模型没有继续训练。为什么?如何使用--checkpoint_dir
?
我从detection_model_zoo下载ssd_mobilenet_v1_coco_2018_01_28.tar.gz
。
然后我将ssd_mobilenet_v1_coco_2018_01_28.tar.gz
解压缩到文件夹object_detection/ssd_mobilenet_v1_coco_2018_01_28
。
object_detection/ssd_mobilenet_v1_coco_2018_01_28
文件夹有这样的文件:
那么如何在training/ssd_mobilenet_v1_coco.config
中使用fine_tune_checkpoint
呢?
training/ssd_mobilenet_v1_coco.config
中的内容是这样的:
# SSD with Mobilenet v1 configuration for MSCOCO Dataset.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model
ssd
num_classes: 2
box_coder
faster_rcnn_box_coder
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
matcher
argmax_matcher
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
similarity_calculator
iou_similarity
anchor_generator
ssd_anchor_generator
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
image_resizer
fixed_shape_resizer
height: 300
width: 300
box_predictor
convolutional_box_predictor
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 1
box_code_size: 4
apply_sigmoid_to_scores: false
conv_hyperparams
activation: RELU_6,
regularizer
l2_regularizer
weight: 0.00004
initializer
truncated_normal_initializer
stddev: 0.03
mean: 0.0
batch_norm
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
feature_extractor
type: 'ssd_mobilenet_v1'
min_depth: 16
depth_multiplier: 1.0
conv_hyperparams
activation: RELU_6,
regularizer
l2_regularizer
weight: 0.00004
initializer
truncated_normal_initializer
stddev: 0.03
mean: 0.0
batch_norm
train: true,
scale: true,
center: true,
decay: 0.9997,
epsilon: 0.001,
loss
classification_loss
weighted_sigmoid
localization_loss
weighted_smooth_l1
hard_example_miner
num_hard_examples: 3000
iou_threshold: 0.99
loss_type: CLASSIFICATION
max_negatives_per_positive: 3
min_negatives_per_image: 0
classification_weight: 1.0
localization_weight: 1.0
normalize_loss_by_num_matches: true
post_processing
batch_non_max_suppression
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
score_converter: SIGMOID
train_config:
batch_size: 10
optimizer
rms_prop_optimizer:
learning_rate:
exponential_decay_learning_rate
initial_learning_rate: 0.004
decay_steps: 800720
decay_factor: 0.95
momentum_optimizer_value: 0.9
decay: 0.9
epsilon: 1.0
fine_tune_checkpoint: 'ssd_mobilenet_v1_coco_2018_01_28/model.ckpt'
from_detection_checkpoint: true
# Note: The below line limits the training process to 200K steps, which we
# empirically found to be sufficient enough to train the pets dataset. This
# effectively bypasses the learning rate schedule (the learning rate will
# never decay). Remove the below line to train indefinitely.
num_steps: 1000
data_augmentation_options
random_horizontal_flip
data_augmentation_options
ssd_random_crop
train_input_reader:
tf_record_input_reader
input_path:'data/train.record'
label_map_path:'data/side_vehicle.pbtxt'
eval_config:
num_examples: 8000
# Note: The below line limits the evaluation process to 10 evaluations.
# Remove the below line to evaluate indefinitely.
max_evals: 10
eval_input_reader:
tf_record_input_reader
input_path: 'data/test.record'
label_map_path: 'data/side_vehicle.pbtxt'
shuffle: false
num_readers: 1
这两行对吗?
fine_tune_checkpoint: 'ssd_mobilenet_v1_coco_2018_01_28/model.ckpt'
from_detection_checkpoint: true
tensorflow对象检测中checkpoint_dir和fine_tune_checkpoint有什么区别?
【问题讨论】:
【参考方案1】:checkpoint_dir
的功能从名字上看并不明显。此参数允许您提供模型的检查点,以便仅对其进行评估,无需任何培训。确实,如果你看到这个参数的帮助,你会得到 p>
包含检查点的目录的路径。如果
checkpoint_dir
是 提供,这个二进制文件在 eval-only 模式下运行,写入结果 指标到model_dir
。
另一方面,fine_tune_checkpoint 是不言自明的,确实可以让您提供一个检查点来进行微调。请注意,如果您不设置 fine_tune_checkpoint_type: "detection"
和 load_all_detection_checkpoint_vars: true
,则不会恢复所有可能的(即现有和兼容的)变量。
【讨论】:
我从这个页面学到了一些微调:***.com/questions/56012092/…。该页面不建议使用load_all_detection_checkpoint_vars
。我该怎么办?不要使用load_all_detection_checkpoint_vars
?
我认为这不是真的。例如,您可以在此处查看用于恢复 SSD 型号的代码:github.com/tensorflow/models/blob/master/research/… 具体请查看第 1332 行:github.com/tensorflow/models/blob/master/research/…以上是关于tensorflow对象检测中的checkpoint_dir和fine_tune_checkpoint有啥区别?的主要内容,如果未能解决你的问题,请参考以下文章
Tensorflow对象检测:为啥使用ssd mobilnet v1时图像中的位置会影响检测精度?
TensorFlow对象检测配置文件中的“num_examples:2000”是啥意思?
如何解决 Tensorflow 2 对象检测 API 中的 UnicodeError