Python多处理:超过超时后通过参数终止进程

Posted

技术标签:

【中文标题】Python多处理:超过超时后通过参数终止进程【英文标题】:Python multiprocessing: terminate processes by arguments after exceeding timeout 【发布时间】:2021-05-22 00:35:08 【问题描述】:

我想针对kn 的不同值计算长时间运行函数的运行时间。 例如:k = [2,3,...,100]n = [50,100,150,200,...,1000]

如果特定 (k, n) 元组的运行时间超过特定时间量(例如,60 seconds)我想用更大的n 停止每个进程的执行(并将运行时间设置为inf)。 例如,如果n = 500 超时,我想取消所有带有n >= 500 的任务的执行。

我尝试使用 Python 的 multiprocessing.Poolconcurrent.futures.ProcessPoolExecutor,但找不到取消正在运行的任务的方法。据我发现,在它运行时无法取消它。

我认为也许我应该以不同的方式解决这个问题。

请指教。

import multiprocessing
import random
import time
from datetime import datetime
from itertools import product
from multiprocessing import Pool

n_list = [n * 50 for n in range(1, 21)]
k_list = [k for k in range(2, 31)]
k_n_list = list(product(k_list, n_list))

def long_running_function(k, n):
    start_time = datetime.now()
    time.sleep(random.randint(2,120))
    end_time = datetime.now()
    running_time = end_time - start_time

    return k, n, running_time.total_seconds()


running_times = []

with Pool(processes=multiprocessing.cpu_count()) as pool:
    async_results = []
    for k, n in k_n_list:
        async_results.append((k, n, pool.apply_async(func=long_running_function, args=(k, n))))

    for k, n, result in async_results:
        try:
            process_result = result.get(60)  # timeout after 60 seconds
            running_times.append(process_result)

        except multiprocessing.TimeoutError:
            print(f"Timeout for k = k, n = n")
            running_times.append((k, n, float('inf')))

            # HERE I WOULD LIKE TO CANCEL EVERY TASK WITH N >= n

【问题讨论】:

【参考方案1】:

首先你应该知道的是下面的语句......

process_result = result.get(60)  # timeout after 60 seconds

...如果与result 关联的任务尚未完成,将引发multiprocessing.TimeoutError但它不会终止任务;任务继续运行。但是,当调用 pool.terminate() 时,无论是在您退出 with Pool ... as pool: 块时隐式调用还是显式调用时,池中的所有进程(当然还有它们当前正在运行的任务)都将被终止。但是千万别想用concurrent.futures创建的进程池;没有任何方法可以在所有任务完成之前终止进程。

其次,您在os.cpu_count() 大小的进程池中运行k * n 任务,其中任务数可能远大于您拥有的池中的进程数。因此,有可能当你发现自己的一项任务在 60 秒内没有完成时,还有很多任务甚至还没有开始运行。这总是有问题的,因为您将为所有具有特定 n 值的任务留出 60 秒的时间来完成,但许多任务在被终止之前甚至没有机会开始。

第三,在你执行的循环中......

process_result = result.get(60)

您正在测试的 AsynchResult 实例可能会在 3 秒后返回结果(而不是超时)。 但是自您提交任务以来已经过去了 3 秒。在下一次迭代中,您现在只想等待 57 秒等待下一个结果!

一种可能的解决方案是使用一个multiprocessing.Value 实例,该实例存储在所有进程的共享内存中,因此对初始化为sys.maxsize 的所有任务都是可见的。您的工作函数必须定期检查此Value 的值,如果小于或等于它们正在处理的n 的值,这是工作函数立即正常返回的信号。因此,代码变成了下面的样子(注意我为了演示的目的已经改变了一些参数):

import multiprocessing
import random
import time
from datetime import datetime
from itertools import product
from multiprocessing import Pool, Value
import sys
import ctypes


def init_pool(v):
    global stop_n
    stop_n = v

def long_running_function(k, n):
    print('n =', n)
    start_time = datetime.now()
    #sleep_time = random.randint(2, 10)
    sleep_time = n / 100 + .3
    t_stop = time.time() + sleep_time
    while time.time() < t_stop:
        if n >= stop_n.value:
            print('quitting because my n is', n)
            break
        time.sleep(.1)
    end_time = datetime.now()
    running_time = end_time - start_time

    return k, n, running_time.total_seconds()


# required for Windows:
if __name__ == '__main__':
    n_list = [n * 50 for n in range(1, 20)]
    k_list = [k for k in range(2, 3)]
    k_n_list = list(product(k_list, n_list))

    running_times = []

    stop_n = Value(ctypes.c_ulonglong,  sys.maxsize)

    # best to leave one processor free for main process
    with Pool(processes=multiprocessing.cpu_count() - 1, initializer=init_pool, initargs=(stop_n,)) as pool:
        async_results = []
        for k, n in k_n_list:
            async_results.append((k, n, pool.apply_async(func=long_running_function, args=(k, n))))

        TIMEOUT = 4 # timeout after 4 seconds
        start_time = time.time()
        for k, n, result in async_results:
            try:
                time_to_wait = TIMEOUT - (time.time() - start_time)
                if time_to_wait < 0:
                    time_to_wait = 0
                process_result = result.get(time_to_wait)
            except multiprocessing.TimeoutError:
                # signal to tasks whose n argument is >= than this value of n:
                print('setting stop value to', n)
                stop_n.value = n
                break

        # now process actual results:
        for k, n, result in async_results:
            process_result = result.get()
            running_times.append(process_result)
        print(running_times)

打印:

n = 50
n = 100
n = 150
n = 200
n = 250
n = 300
n = 350
n = 400
n = 450
n = 500
n = 550
n = 600
n = 650
n = 700
setting stop value to 400
quitting because my n is 400
n = 750
quitting because my n is 750
n = 800
quitting because my n is 800
quitting because my n is 500
quitting because my n is 450
n = 850
n = 900
n = 950
quitting because my n is 850
quitting because my n is 900
quitting because my n is 950
quitting because my n is 550
quitting because my n is 600
quitting because my n is 650
quitting because my n is 700
[(2, 50, 0.803502), (2, 100, 1.306462), (2, 150, 1.807341), (2, 200, 2.308982), (2, 250, 2.812402), (2, 300, 3.315068), (2, 350, 3.81634), (2, 400, 3.114924), (2, 450, 2.627066), (2, 500, 2.124075), (2, 550, 1.607504), (2, 600, 1.104059), (2, 650, 0.604383), (2, 700, 0.100104), (2, 750, 0.001005), (2, 800, 0.000999), (2, 850, 0.002), (2, 900, 0.001999), (2, 950, 0.001999)]

您会观察到,在我的具有 8 个核心的桌面上,其中 7 个已分配给池,在共享的Value 设置为400 时,有几个任务正在等待启动,因此当它们执行start 他们立即终止(你可以看到他们的运行时间非常小)。正如我所说,您尝试这种方式是有问题的。 最好在将Value 设置为n 之后,为每个适用的任务而不是立即返回,给自己一定的秒数来完成。

更新

如果您希望已经开始主进程的任务无论如何都完成(因为他们无法检查stop_n),请将long_range_function更改为:

def long_running_function(k, n):
    start_time = datetime.now()
    print('n =', n)
    if n < stop_n.value:
        #time.sleep(random.randint(2, 10))
        time.sleep(n / 100 + .3)
    else:
        print('quitting because my n is', n)
    end_time = datetime.now()
    running_time = end_time - start_time

    return k, n, running_time.total_seconds()

现在打印:

n = 50
n = 100
n = 150
n = 200
n = 250
n = 300
n = 350
n = 400
n = 450
n = 500
n = 550
n = 600
n = 650
n = 700
setting stop value to 400
n = 750
quitting because my n is 750
n = 800
quitting because my n is 800
n = 850
quitting because my n is 850
n = 900
quitting because my n is 900
n = 950
quitting because my n is 950
[(2, 50, 0.801908), (2, 100, 1.300968), (2, 150, 1.800735), (2, 200, 2.301075), (2, 250, 2.800968), (2, 300, 3.301077), (2, 350, 3.800717), (2, 400, 4.301718), (2, 450, 4.801664), (2, 500, 5.301043), (2, 550, 5.800506), (2, 600, 6.300665), (2, 650, 6.800603), (2, 700, 7.301471), (2, 750, 0.0), (2, 800, 0.0), (2, 850, 0.0), (2, 900, 0.0), (2, 950, 0.001015)]

【讨论】:

谢谢@Booboo!是否可以在不检查工作线程中的n 的情况下完成您的建议?实际上我的工人运行一些库函数。我没有任何“while 循环”(或类似的东西)来定期检查它。也许我应该让他们完成并仅在开始时检查.. 现在你说已经运行的任务应该被允许完成,因为它们无法检查(可能是值stop_n.value),因为没有while loop。我明白了。但是,我也知道他们可以在任务启动时进行检查。我不明白你所说的“不检查n”是什么意思。你需要比较nstop_n.value开头的long_running_function 查看更新后的long_running_function 新输出。

以上是关于Python多处理:超过超时后通过参数终止进程的主要内容,如果未能解决你的问题,请参考以下文章

Python多处理imap - 丢弃超时进程

Python多处理池:完成任何k个作业后终止进程

在 Python 中进行多处理时,在类实例中通过 self 传递参数

Python多进程

Python多处理 - 产生的进程终止时主进程不会继续

nginx - 超时后不正常的工作人员终止