使用 Python OpenCV 检测图像中的对象位置

Posted

技术标签:

【中文标题】使用 Python OpenCV 检测图像中的对象位置【英文标题】:Detecting object location in image with Python OpenCV 【发布时间】:2020-04-18 20:37:19 【问题描述】:

我需要在图像中找到下方肿瘤的位置,即大脑的左侧或右侧。

我尝试使用轮廓和 Canny 边缘检测来检测侧面,但似乎不起作用

# Find Canny edges 
edged = cv2.Canny(img, 30, 200) 
cv2.waitKey(0) 

# Finding Contours 
# Use a copy of the image e.g. edged.copy() 
# since findContours alters the image 
contours, hierarchy = cv2.findContours(edged,  
    cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) 

cv2.imshow('Canny Edges After Contouring', edged) 
cv2.waitKey(0) 

print("Number of Contours found = " + str(len(contours))) 

# Draw all contours 
# -1 signifies drawing all contours 
cv2.drawContours(img, contours, -1, (0, 255, 0), 3) 

【问题讨论】:

【参考方案1】:

一种方法是利用肿瘤颜色较浅的观察结果来执行颜色分割。我们首先提取大脑 ROI,以防万一 大脑与一侧对齐,而不是在图像的中心。从这里将图像转换为 HSV 颜色空间,定义上下颜色范围,然后使用cv2.inRange() 执行颜色阈值处理。这将为我们提供一个二进制掩码。从这里我们只需裁剪蒙版的左右两半,然后使用cv2.countNonZero() 计算每一侧的像素。具有较高像素数的一侧将是有肿瘤的一侧。


Otsu 的阈值 -> 检测到的大脑 ROI -> 提取的 ROI

# Load image, grayscale, Otsu's threshold, and extract ROI
image = cv2.imread('1.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
x,y,w,h = cv2.boundingRect(thresh)
ROI = image[y:y+h, x:x+w]

在提取的 ROI 上进行颜色分割后生成的二进制掩码

# Color segmentation on ROI
hsv = cv2.cvtColor(ROI, cv2.COLOR_BGR2HSV)
lower = np.array([0, 0, 152])
upper = np.array([179, 255, 255])
mask = cv2.inRange(hsv, lower, upper)

裁剪左右两半

# Crop left and right half of mask
x, y, w, h = 0, 0, image.shape[1]//2, image.shape[0]
left = mask[y:y+h, x:x+w]
right = mask[y:y+h, x+w:x+w+w]

每一半的像素数

左像素:1252

右像素:12

# Count pixels
left_pixels = cv2.countNonZero(left)
right_pixels = cv2.countNonZero(right)

由于左半边有更多像素,因此肿瘤位于大脑的半边


完整代码

import numpy as np
import cv2

# Load image, grayscale, Otsu's threshold, and extract ROI
image = cv2.imread('1.jpg')
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.threshold(gray, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)[1]
x,y,w,h = cv2.boundingRect(thresh)
ROI = image[y:y+h, x:x+w]

# Color segmentation on ROI
hsv = cv2.cvtColor(ROI, cv2.COLOR_BGR2HSV)
lower = np.array([0, 0, 152])
upper = np.array([179, 255, 255])
mask = cv2.inRange(hsv, lower, upper)

# Crop left and right half of mask
x, y, w, h = 0, 0, ROI.shape[1]//2, ROI.shape[0]
left = mask[y:y+h, x:x+w]
right = mask[y:y+h, x+w:x+w+w]

# Count pixels
left_pixels = cv2.countNonZero(left)
right_pixels = cv2.countNonZero(right)

print('Left pixels:', left_pixels)
print('Right pixels:', right_pixels)

cv2.imshow('mask', mask)
cv2.imshow('thresh', thresh)
cv2.imshow('ROI', ROI)
cv2.imshow('left', left)
cv2.imshow('right', right)
cv2.waitKey()

我使用这个 HSV 颜色阈值脚本来确定上下颜色范围

import cv2
import sys
import numpy as np

def nothing(x):
    pass

# Create a window
cv2.namedWindow('image')

# create trackbars for color change
cv2.createTrackbar('HMin','image',0,179,nothing) # Hue is from 0-179 for Opencv
cv2.createTrackbar('SMin','image',0,255,nothing)
cv2.createTrackbar('VMin','image',0,255,nothing)
cv2.createTrackbar('HMax','image',0,179,nothing)
cv2.createTrackbar('SMax','image',0,255,nothing)
cv2.createTrackbar('VMax','image',0,255,nothing)

# Set default value for MAX HSV trackbars.
cv2.setTrackbarPos('HMax', 'image', 179)
cv2.setTrackbarPos('SMax', 'image', 255)
cv2.setTrackbarPos('VMax', 'image', 255)

# Initialize to check if HSV min/max value changes
hMin = sMin = vMin = hMax = sMax = vMax = 0
phMin = psMin = pvMin = phMax = psMax = pvMax = 0

img = cv2.imread('1.jpg')
output = img
waitTime = 33

while(1):

    # get current positions of all trackbars
    hMin = cv2.getTrackbarPos('HMin','image')
    sMin = cv2.getTrackbarPos('SMin','image')
    vMin = cv2.getTrackbarPos('VMin','image')

    hMax = cv2.getTrackbarPos('HMax','image')
    sMax = cv2.getTrackbarPos('SMax','image')
    vMax = cv2.getTrackbarPos('VMax','image')

    # Set minimum and max HSV values to display
    lower = np.array([hMin, sMin, vMin])
    upper = np.array([hMax, sMax, vMax])

    # Create HSV Image and threshold into a range.
    hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    mask = cv2.inRange(hsv, lower, upper)
    output = cv2.bitwise_and(img,img, mask= mask)

    # Print if there is a change in HSV value
    if( (phMin != hMin) | (psMin != sMin) | (pvMin != vMin) | (phMax != hMax) | (psMax != sMax) | (pvMax != vMax) ):
        print("(hMin = %d , sMin = %d, vMin = %d), (hMax = %d , sMax = %d, vMax = %d)" % (hMin , sMin , vMin, hMax, sMax , vMax))
        phMin = hMin
        psMin = sMin
        pvMin = vMin
        phMax = hMax
        psMax = sMax
        pvMax = vMax

    # Display output image
    cv2.imshow('image',output)

    # Wait longer to prevent freeze for videos.
    if cv2.waitKey(waitTime) & 0xFF == ord('q'):
        break

cv2.destroyAllWindows()

【讨论】:

你提到的方法真的很有帮助。你认为如果大脑对齐到一侧而不是在 jpg 图像的中心,这可以工作吗? @ShaviPathirana 检查更新,如果大脑在图像中的任何位置对齐,它现在应该可以工作。它不必位于图像的中心。唯一的假设是每张图像只有一个大脑 使用 otsu 阈值比使用普通阈值是否有特定原因 是的 Otsu 会自动计算阈值,因此如果照明条件发生变化,它将正确适应。您也可以尝试自适应阈值。见here【参考方案2】:

cannyfindContours 不是解决此类问题的好方法。如果您想要一个简单的解决方案,只需使用阈值方法。大津阈值也会给你一个很好的结果。

【讨论】:

请注意,由于存在三个主要级别(黑色背景、灰色组织和白色肿瘤,Otsu 可能会选择错误的阈值。 @YvesDaoust 黑色背景可以通过在数组中放置非零像素并在该数组上执行 Otsu 来忽略。此外,这是最简单的方法而不是最好的方法。可以通过主动轮廓等更复杂的方法来完成。

以上是关于使用 Python OpenCV 检测图像中的对象位置的主要内容,如果未能解决你的问题,请参考以下文章

使用 OpenCV 检测图像中已知形状/对象的方法

使用Python,Opencv检测AprilTag

[OpenCV-Python] OpenCV 中计算摄影学 部分 IX 对象检测 部分 X

检测图像opencv中的对象区域

使用Python,Opencv检测图像,视频中的猫

Python-OpenCV中的图像轮廓检测