Weka分类:错误+正确<总实例数,怎么来的?
Posted
技术标签:
【中文标题】Weka分类:错误+正确<总实例数,怎么来的?【英文标题】:Weka classification: wrong+correct < total instances, how come? 【发布时间】:2017-12-28 08:16:15 【问题描述】:我为著名的鸢尾花问题运行了这段代码,进行了 10 次交叉验证,然后使用 5 种不同的分类方法对它们进行了分类。
这应该使分类器在 135 个实例上训练并在 15 个实例上测试 10 次,所以我希望有错误的分类实例 + 正确的分类实例 = 15。
以下是代码和输出。
public class WekaTest
public static void main(String[] args) throws Exception
// Comments are denoted by "//" at the beginning of the line.
BufferedReader datafile = readDataFile("C:\\Program Files\\Weka-3-8\\data\\iris.arff");
//BufferedReader datafile = readDataFile("C:\\hwork\\titanic\\train.arff");
Instances data = new Instances(datafile);
data.setClassIndex(data.numAttributes() - 1);
// Choose a type of validation split
Instances[][] split = crossValidationSplit(data, 10);
// Separate split into training and testing arrays
Instances[] trainingSplits = split[0];
Instances[] testingSplits = split[1];
// Choose a set of classifiers
Classifier[] models = new J48(),
new PART(),
new DecisionTable(),
new OneR(),
new DecisionStump() ;
// Run for each classifier model
double[][][] predictions = new double[100][100][2];
for(int j = 0; j < models.length; j++)
for(int i = 0; i < trainingSplits.length; i++)
Evaluation validation = new Evaluation(trainingSplits[i]);
models[j].buildClassifier(trainingSplits[i]);
validation.evaluateModel(models[j], testingSplits[i]);
predictions[j][i][0] = validation.correct();
predictions[j][i][1] = validation.incorrect();
System.out.println("Classifier: "+models[j].getClass()+" : Correct: "+predictions[j][i][0]+", Wrong: "+predictions[i][j][1]);
//training foreach fold.
System.out.println("===================================================================");
//training foreach classifier.
//main().
public static BufferedReader readDataFile(String filename)
BufferedReader inputReader = null;
try
inputReader = new BufferedReader(new FileReader(filename));
catch (FileNotFoundException ex)
System.err.println("File not found: " + filename);
return inputReader;
//readDataFile().
public static Evaluation simpleClassify(Classifier model, Instances trainingSet, Instances testingSet) throws Exception
Evaluation validation = new Evaluation(trainingSet);
model.buildClassifier(trainingSet);
validation.evaluateModel(model, testingSet);
return validation;
//simpleClassify().
public static double calculateAccuracy(FastVector predictions)
double correct = 0;
for (int i = 0; i < predictions.size(); i++)
NominalPrediction np = (NominalPrediction) predictions.elementAt(i);
if (np.predicted() == np.actual())
correct++;
return 100 * correct / predictions.size();
//calculateAccuracy().
public static Instances[][] crossValidationSplit(Instances data, int numberOfFolds)
Instances[][] split = new Instances[2][numberOfFolds];
for (int i = 0; i < numberOfFolds; i++)
split[0][i] = data.trainCV(numberOfFolds, i);
split[1][i] = data.testCV(numberOfFolds, i);
return split;
//corssValidationSplit().
//class.
=====================
输出:
Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.trees.J48 : Correct: 14.0, Wrong: 0.0
Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.trees.J48 : Correct: 14.0, Wrong: 0.0
Classifier: class weka.classifiers.trees.J48 : Correct: 13.0, Wrong: 0.0
Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.trees.J48 : Correct: 13.0, Wrong: 0.0
Classifier: class weka.classifiers.trees.J48 : Correct: 12.0, Wrong: 0.0
Classifier: class weka.classifiers.trees.J48 : Correct: 15.0, Wrong: 0.0
===================================================================
Classifier: class weka.classifiers.rules.PART : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.PART : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.PART : Correct: 14.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.PART : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.PART : Correct: 14.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.PART : Correct: 13.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.PART : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.PART : Correct: 13.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.PART : Correct: 9.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.PART : Correct: 13.0, Wrong: 0.0
===================================================================
Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 1.0
Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 1.0
Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.DecisionTable : Correct: 13.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.DecisionTable : Correct: 13.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.DecisionTable : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.DecisionTable : Correct: 13.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.DecisionTable : Correct: 12.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.DecisionTable : Correct: 14.0, Wrong: 0.0
===================================================================
Classifier: class weka.classifiers.rules.OneR : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.OneR : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.OneR : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.OneR : Correct: 14.0, Wrong: 1.0
Classifier: class weka.classifiers.rules.OneR : Correct: 13.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.OneR : Correct: 12.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.OneR : Correct: 15.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.OneR : Correct: 14.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.OneR : Correct: 14.0, Wrong: 0.0
Classifier: class weka.classifiers.rules.OneR : Correct: 14.0, Wrong: 0.0
===================================================================
Classifier: class weka.classifiers.trees.DecisionStump : Correct: 15.0, Wrong: 1.0
Classifier: class weka.classifiers.trees.DecisionStump : Correct: 15.0, Wrong: 1.0
Classifier: class weka.classifiers.trees.DecisionStump : Correct: 15.0, Wrong: 2.0
Classifier: class weka.classifiers.trees.DecisionStump : Correct: 5.0, Wrong: 2.0
Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 15.0
Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 0.0
Classifier: class weka.classifiers.trees.DecisionStump : Correct: 5.0, Wrong: 0.0
Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 0.0
Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 0.0
Classifier: class weka.classifiers.trees.DecisionStump : Correct: 0.0, Wrong: 0.0
===================================================================
【问题讨论】:
【参考方案1】:在打印线上
System.out.println("Classifier: "+models[j].getClass()+" : Correct: "+predictions[j][i][0]+", Wrong: "+predictions[i][j][1]);
以下部分
Wrong: "+predictions[i][j][1]);
应该是
Wrong: "+predictions[j][i][1]);
你切换了 j 和 i。
【讨论】:
以上是关于Weka分类:错误+正确<总实例数,怎么来的?的主要内容,如果未能解决你的问题,请参考以下文章