使用 Gridsearch 进行 RFE 排名
Posted
技术标签:
【中文标题】使用 Gridsearch 进行 RFE 排名【英文标题】:RFE ranking with Gridsearch 【发布时间】:2020-11-05 22:58:48 【问题描述】:我想在管道中使用 RFE 进行特征选择。我没有问题让它在没有 GridSearch 的管道中工作。但是,当我尝试合并 GridSearch 时,我不断收到值错误(注意。没有 RFE 的模型很好)。
我已尝试按照本主题中的建议使用 feature_selection:Grid Search with Recursive Feature Elimination in scikit-learn pipeline returns an error,但这会导致相同的错误。
可能出了什么问题?
我的错误:
ValueError:估计器 RFE 的参数 alpha 无效(estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,
normalize=True,random_state=None,求解器='auto',
tol=0.001),
n_features_to_select=4,步骤=1,详细=1)。使用estimator.get_params().keys()
检查可用参数列表。
这很好用:
rfe=RFE(estimator=LinearRegression(), n_features_to_select=4, verbose=1)
#setup the pipeline steps
steps = [('scaler', StandardScaler()),
('imputation', SimpleImputer(missing_values = np.NaN, strategy='most_frequent')),
('reg', rfe)]
# Create the pipeline: pipeline
pipeline = Pipeline(steps)
# Create train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# Fit the pipeline to the training set:
pipeline.fit(X_train, y_train)
# Predict the labels of the test set
y_pred = pipeline.predict(X_test)
print()
# Print the features and their ranking (high = dropped early on)
print(dict(zip(X.columns, rfe.ranking_)))
# Print the features that are not eliminated
print(X.columns[rfe.support_])
print()
print("R^2: ".format(pipeline.score(X_test, y_test)))
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
print("Root Mean Squared Error: ".format(rmse))
这不起作用
rfe=RFE(estimator=Ridge(normalize=True), n_features_to_select=4, verbose=1)
#setup the pipeline steps
steps = [('scaler', StandardScaler()),
('imputation', SimpleImputer(missing_values=np.NaN, strategy='most_frequent')),
('ridge', rfe)]
# Create the pipeline: pipeline
pipeline = Pipeline(steps)
#Define hyperparameters and range of Grid Search
parameters = "ridge__alpha": np.linspace(0,1,100)
# Create train and test sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42)
# run cross validation
cv = GridSearchCV(pipeline, param_grid = parameters, cv=3)
# Fit the pipeline to the training set:
cv.fit(X_train, y_train)
# Predict the labels of the test set
y_pred = cv.predict(X_test)
# Compute and print R^2 and RMSE
print("R^2: ".format(cv.score(X_test, y_test)))
rmse = np.sqrt(mean_squared_error(y_test, y_pred))
print("Root Mean Squared Error: ".format(rmse))
print("Tuned Model Parameters: ".format(cv.best_params_))
使用 feature_selection 也不起作用
selector = feature_selection.RFE(Ridge(normalize=True))
#setup the pipeline steps
steps = [('scaler', StandardScaler()),
('imputation', SimpleImputer(missing_values=np.NaN, strategy='most_frequent')),
('RFE', selector)]
# Create the pipeline: pipeline
pipeline = Pipeline(steps)
【问题讨论】:
【参考方案1】:这个问题很老了,但万一有人偶然发现它:
您可以使用参数 '
from sklearn.pipeline import Pipeline
from sklearn.model_selection import TimeSeriesSplit, GridSearchCV
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import Ridge
from sklearn.feature_selection import RFE
model = RFE(estimator=Ridge())
pipe = Pipeline(
steps = [
("scaler", StandardScaler()),
("rfe", model)
]
)
param =
"rfe__step" : np.linspace(0.1, 1, 10),
"rfe__estimator__alpha" : np.logspace(-3, 3, 7)
tscv = TimeSeriesSplit(n_splits=5).split(X_train)
gridsearch = GridSearchCV(estimator=pipe, cv=tscv, param_grid=param, refit=True, return_train_score=True, n_jobs=-1)
fit = gridsearch.fit(X_train, y_train)
【讨论】:
以上是关于使用 Gridsearch 进行 RFE 排名的主要内容,如果未能解决你的问题,请参考以下文章
使用 Gridsearch 进行超参数搜索,给出不起作用的参数值
R语言基于递归特征消除RFE(Recursive Feature Elimination)进行特征筛选(feature selection)
机器学习入门-使用GridSearch进行网格参数搜索GridSeach(RandomRegressor(), param_grid, cv=3)