使用 sklearn 线性回归,如何将计算出的回归系数约束为大于 0?

Posted

技术标签:

【中文标题】使用 sklearn 线性回归,如何将计算出的回归系数约束为大于 0?【英文标题】:Using sklearn linear regression, how can I constrain the calculated regression coefficients to be greater than 0? 【发布时间】:2018-07-27 14:40:52 【问题描述】:

我在这里使用 sklearn 的参考http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html,但没有限制回归系数的选项。

有人知道python中的另一个包来执行多变量线性回归并将回归系数限制为大于0吗?

这是我目前的代码。

'''data:
date        A            B              C
10/30/2015  0.063363323 -0.005218807    0.079777558
11/30/2015  -0.013171244    -0.008727599    0.010352028
12/31/2015  -0.017551268    8.09E-05    -0.020491923
1/29/2016   -0.042606469    0.052272139 -0.080362246
2/29/2016   -0.015224562    0.031250961 0.029988488
3/31/2016   0.058291876 -0.000238614    0.056727336
4/29/2016   0.000505675 -0.005325338    0.02854057
5/31/2016   0.012766515 0.008548162 -0.001631845
6/30/2016   -0.038981203    0.064236963 0.00570145
7/29/2016   0.033715429 0.024269606 0.02703294
8/31/2016   -0.002083837    -0.009439625    0.004129397
9/30/2016   -0.009825674    -0.01737909 -0.019251885
11/30/2016  0.0084733   -0.11668582 0.031928726
12/30/2016  0.017084282 -0.005553088    0.029372131
1/31/2017   0.014263947 0.004036504 0.00187079
2/28/2017   0.037375566 0.016081105 0.039331615
3/31/2017   -0.002494984    -0.005942793    -0.002097504
4/28/2017   -0.005054922    0.015685226 0.008243977
5/31/2017   0.002285393 0.020771375 0.002697755
6/30/2017   0.002841457 0.004886117 0.019202011
7/31/2017   0.014866638 -0.006900926    0.010126577
8/31/2017   -0.016647997    0.035687133 -0.008709075
9/29/2017   0.019523651 -0.022154361    0.020468398
10/31/2017  0.019407629 -0.000705663    0.016574416
11/30/2017  0.027486425 0.008008173 0.033427299
12/29/2017  0.007861222 0.018095096 0.017908809
1/31/2018   0.058702838 -0.032765285    0.05
'''

reg = linear_model.LinearRegression(fit_intercept=False)
reg.fit(df[['B', 'C']], df['A'])

print(reg.coef_)

# [ 0.67761268 -0.08845756]

下面的工作代码

from scipy.optimize import lsq_linear   

lb = 0
ub = np.Inf
res = lsq_linear(df[['B', 'C']], 
                 df['A'], 
                 bounds=(lb, ub))

print(res.x)

【问题讨论】:

您的一些 y 值,例如df['A'], 是负数。也许尝试标准化您的数据,例如与 sklearn 的 MinMaxScaler? 【参考方案1】:

sklearn 只是包装了 scipy 的 lstsq,它不支持这一点。

您可以轻松修改 sklearn 的 code:

    if sp.issparse(X):
        if y.ndim < 2:
            out = sparse_lsqr(X, y)
            self.coef_ = out[0]
            self._residues = out[3]
        else:
            # sparse_lstsq cannot handle y with shape (M, K)
            outs = Parallel(n_jobs=n_jobs_)(
                delayed(sparse_lsqr)(X, y[:, j].ravel())
                for j in range(y.shape[1]))
            self.coef_ = np.vstack(out[0] for out in outs)
            self._residues = np.vstack(out[3] for out in outs)
    else:
        self.coef_, self._residues, self.rank_, self.singular_ = \
            linalg.lstsq(X, y)
        self.coef_ = self.coef_.T

只需将 lstsq / lsqr 替换为 scipy 的 nnls(密集!!!)或手动设置边界的 lsq_linear(对于大规模:使用方法 lbfgs 的 optimize.minimize 是另一个候选者,尽管您需要准备渐变并且至少有两种不同的常用方法:例如使用预先计算的:A.T*A 失去稀疏性)。

备注:这些方法正在最小化不同的函数(范数与平方范数;0.5 因子与 1.0 因子)。就找到的向量而言,这不会改变结果,但目标当然看起来不同,您应该注意这一点(如果需要)。

【讨论】:

感谢帮助,我把上面写的代码贴出来了。【参考方案2】:

对于在 2021 年获得此答案的人,您现在可以在调用 LinearRegression 时设置 positive = True,以便将系数限制为 > 0。

【讨论】:

以上是关于使用 sklearn 线性回归,如何将计算出的回归系数约束为大于 0?的主要内容,如果未能解决你的问题,请参考以下文章

如何从sklearn LinearRegression中导出线性回归公式

如何使用 Matplotlib、pandas 和 sklearn 创建线性回归图?

线性回归系数如何存储在 Sklearn 管道中?

如何解析 sklearns 线性回归的日期值?

sklearn—LinearRegression,Ridge,RidgeCV,Lasso线性回归模型简单使用

线性回归实现总是比 sklearn 表现差