SciPy 树状图绘图
Posted
技术标签:
【中文标题】SciPy 树状图绘图【英文标题】:SciPy Dendrogram Plotting 【发布时间】:2020-06-06 04:27:05 【问题描述】:我正在玩分层文档集群,实际上我的工作流程几乎是这样的:
df = pandas.read_csv(file, delimiter='\t', index_col=0) # documents-terms matrix (very sparse)
dist_matrix = cosine_similarity(df)
linkage_matrix = ward(dist_matrix)
labels = fcluster(linkage_matrix, 5, criterion='maxclust')
然后我希望得到 5 个集群,但是当我绘制树状图时
fig, ax = plt.subplots(figsize=(15, 20)) # set size
ax = dendrogram(linkage_matrix, orientation="right")
plt.tick_params( \
axis='x', # changes apply to the x-axis
which='both', # both major and minor ticks are affected
bottom='off', # ticks along the bottom edge are off
top='off', # ticks along the top edge are off
labelbottom='off')
plt.tight_layout() # show plot with tight layout
plt.savefig('ward_clusters.png', dpi=200) # save figure as ward_clusters
我得到以下图表
根据颜色,我可以看到 3 个集群,而不是 5 个!我误解了树状图的含义吗?
【问题讨论】:
【参考方案1】: 首先,如果你只想做5个集群,就用labels(你没用fcluster的那一行)。在标签中:数据集中的每个点都由一个数字表示。这些数字是集群的 ID。
如果您想使用树状图并绘制 5 个不同的聚类,则必须“剪切”您的树状图。在 x=5(大约 5)处画一条垂直线,考虑左侧的每个树状图都是独立的。
人工将树状图切割成 5 个部分(或 5 个簇)。
要添加一些颜色来区分它们,只需修改以下代码(由于您没有提供数据集,我使用 iris 数据集向您展示了一种可能的解决方案)
from scipy.cluster.hierarchy import *
from sklearn.datasets import load_iris
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
iris= load_iris()
data = iris['data']
df = pd.DataFrame(data, columns = iris['feature_names'])
# Somehow, we have something equivalent to work with now
dist_matrix = cosine_similarity(df)
linkage_matrix = ward(dist_matrix)
fig, ax = plt.subplots(figsize=(20, 10))
#here just put 5 for the color_threshold, which correspond to the position of the vertical line
ax = dendrogram(linkage_matrix, color_threshold =0.7)
plt.tick_params( \
axis='x',
which='both',
bottom='off',
top='off',
labelbottom='off')
plt.show()
【讨论】:
以上是关于SciPy 树状图绘图的主要内容,如果未能解决你的问题,请参考以下文章