AttributeError:“MLPClassifier”对象没有属性“_label_binarizer”

Posted

技术标签:

【中文标题】AttributeError:“MLPClassifier”对象没有属性“_label_binarizer”【英文标题】:AttributeError: 'MLPClassifier' object has no attribute '_label_binarizer' 【发布时间】:2021-08-01 17:56:05 【问题描述】:

我正在尝试使用 sklearn 的 MLPClassifier 利用 partial_fit() 函数来实现批量训练,但出现以下错误:

我已经咨询了一些与此相关的问题 (partial_fit Sklearn's MLPClassifier)。这是我用来重现错误的一段代码(来自所附参考):

from __future__ import division 
import numpy as np
from sklearn.datasets import make_classification
from sklearn.neural_network import MLPClassifier

#Creating an imaginary dataset
input, output = make_classification(1000, 30, n_informative=10, n_classes=2)
input= input / input.max(axis=0)
N = input.shape[0]
train_input = input[0:500,:]
train_target = output[0:500]

test_input= input[500:N,:]
test_target = output[500:N]

#Creating and training the Neural Net 
# 1. Disable verbose (verbose is annoying with partial_fit)

clf = MLPClassifier(activation='tanh', learning_rate='constant',
 alpha=1e-4, hidden_layer_sizes=(15,), random_state=1, batch_size=1,verbose= False,
 max_iter=1, warm_start=False)

# 2. Set what the classes are
clf.classes_ = [0,1]

for j in range(0,100):
    for i in range(0,train_input.shape[0]):
       input_inst = train_input[[i]]
       target_inst= train_target[[i]]
       clf=clf.partial_fit(input_inst,target_inst)
    # 3. Monitor progress
    print("Score on training set: %0.8f" % clf.score(train_input, train_target))
#Testing the Neural Net
y_pred = clf.predict(test_input)
print(y_pred)

# 4. Compute score on testing set
print(clf.score(test_input, test_target))

我还修改了第 895 行的 multilayer_perceptron.py 代码以替换它,如 here 所述:

self.label_binarizer_.fit(y)

有了这个:

if not incremental:
    self.label_binarizer_.fit(y)

else:
    self.label_binarizer_.fit(self.classes_)

而且还是不行。非常感谢任何帮助。

谢谢!

【问题讨论】:

【参考方案1】:

这可行:

from __future__ import division 
import numpy as np
from sklearn.datasets import make_classification
from sklearn.neural_network import MLPClassifier

#Creating an imaginary dataset
input, output = make_classification(1000, 30, n_informative=10, n_classes=2)
input= input / input.max(axis=0)
N = input.shape[0]
train_input = input[0:500,:]
train_target = output[0:500]

test_input= input[500:N,:]
test_target = output[500:N]

#Creating and training the Neural Net 
# 1. Disable verbose (verbose is annoying with partial_fit)

clf = MLPClassifier(activation='tanh', learning_rate='constant',
 alpha=1e-4, hidden_layer_sizes=(15,), random_state=1, batch_size=1,verbose= False,
 max_iter=1, warm_start=False)


for j in range(0,100):
    for i in range(0,train_input.shape[0]):
       input_inst = train_input[[i]]
       target_inst= train_target[[i]]
       clf.partial_fit(input_inst,target_inst,[0,1])
    # 3. Monitor progress
    print("Score on training set: %0.8f" % clf.score(train_input, train_target))
#Testing the Neural Net
y_pred = clf.predict(test_input)
print(y_pred)

# 4. Compute score on testing set
print(clf.score(test_input, test_target))

此行导致错误:

# 2. Set what the classes are
clf.classes_ = [0,1]

而且你必须在这里通过课程:

clf.partial_fit(input_inst,target_inst,[0,1])

【讨论】:

以上是关于AttributeError:“MLPClassifier”对象没有属性“_label_binarizer”的主要内容,如果未能解决你的问题,请参考以下文章

AttributeError:“字节”对象没有属性“告诉”

AttributeError: 'RDD' 对象没有属性 'show'

AttributeError:“NumpyArrayIterator”对象没有属性“类”

AttributeError:模块 'dbus' 没有属性 'lowlevel'

AttributeError:模块'keras'没有属性'initializers'

AttributeError:“会话”对象没有属性“会话”