LightGBM 错误:ValueError:对于提前停止,评估需要至少一个数据集和评估指标

Posted

技术标签:

【中文标题】LightGBM 错误:ValueError:对于提前停止,评估需要至少一个数据集和评估指标【英文标题】:LightGBM error : ValueError: For early stopping, at least one dataset and eval metric is required for evaluation 【发布时间】:2020-08-24 21:23:41 【问题描述】:

我正在尝试使用 gridsearch 训练 LightGBM,当我尝试训练模型时出现以下错误。

ValueError: For early stopping, at least one dataset and eval metric is required for evaluation

我提供了验证数据集和评估指标。不知道为什么我仍然遇到这个问题。这是我的代码。

train_data  = rtotal[rtotal['train_Y'] == 1]
test_data   = rtotal[rtotal['train_Y'] == 0]

trainData, validData = train_test_split(train_data, test_size=0.007, random_state = 123)

#train data prep
X_train = trainData.iloc[:,2:71]
y_train = trainData.loc[:,['a_class']]

#validation data prep
X_valid = validData.iloc[:,2:71]
y_valid = validData.loc[:,['a_class']]

#X_test
X_test = test_data.iloc[:,2:71]

import lightgbm as lgb
from sklearn.model_selection import GridSearchCV

gridParams = 
    'learning_rate': [0.005],
    'n_estimators': [40],
    'num_leaves': [16,32, 64],
    'objective' : ['multiclass'],
    'random_state' : [501],
    'num_boost_round' : [3000],
    'colsample_bytree' : [0.65, 0.66],
    'subsample' : [0.7,0.75],
    'reg_alpha' : [1,1.2],
    'reg_lambda' : [1,1.2,1.4],
    

lgb_estimator = lgb.LGBMClassifier(boosting_type = 'gbdt', 
                                   n_estimators=500, 
                                   objective = 'multiclass', 
                                   learning_rate =  0.05, num_leaves =  64,  
                                   eval_metric  = 'multi_logloss',
                                   verbose_eval=20, 
                                   eval_set = [X_valid, y_valid],
                                   early_stopping_rounds=100)

g_lgbm = GridSearchCV(estimator=lgb_estimator, param_grid=gridParams, n_jobs = 3, cv= 3)

lgb_model = g_lgbm.fit(X=X_train, y=y_train)

【问题讨论】:

【参考方案1】:

从我在提供的代码中看到,您有几个问题:

    您将分类定义为多类,但并非完全如此,因为您将输出定义为一列,我相信其中可能有多个标签。

    如果您想提前停止,您需要提供验证集,正如错误消息中明确指出的那样。你需要用合适的方法来做。

如果您纠正了这些错误的代码,它会愉快地运行:

gridParams =  
    'learning_rate': [0.005],
    'n_estimators': [40],
    'num_leaves': [16,32, 64], 
    'random_state' : [501],
    'num_boost_round' : [3000],
    'colsample_bytree' : [0.65, 0.66],
    'subsample' : [0.7,0.75],
    'reg_alpha' : [1,1.2],
    'reg_lambda' : [1,1.2,1.4], 
    

lgb_estimator = lgb.LGBMClassifier(boosting_type = 'gbdt', 
                                   n_estimators=500, 
                                   learning_rate =  0.05, num_leaves =  64,  
                                   eval_metric  = 'logloss',
                                   verbose_eval=20, 
                                   early_stopping_rounds=10)

g_lgbm = GridSearchCV(estimator=lgb_estimator, param_grid=gridParams, n_jobs = 3, cv= 3)

lgb_model = g_lgbm.fit(X=X_train, y=y_train, eval_set = (X_valid, y_valid))

...
[370]   valid_0's binary_logloss: 0.422895
[371]   valid_0's binary_logloss: 0.423064
[372]   valid_0's binary_logloss: 0.422681
[373]   valid_0's binary_logloss: 0.423206
[374]   valid_0's binary_logloss: 0.423142
[375]   valid_0's binary_logloss: 0.423414
[376]   valid_0's binary_logloss: 0.423338
[377]   valid_0's binary_logloss: 0.423864
[378]   valid_0's binary_logloss: 0.42381
[379]   valid_0's binary_logloss: 0.42409
[380]   valid_0's binary_logloss: 0.423476
[381]   valid_0's binary_logloss: 0.423759
[382]   valid_0's binary_logloss: 0.423804
Early stopping, best iteration is:
[372]   valid_0's binary_logloss: 0.422681

【讨论】:

以上是关于LightGBM 错误:ValueError:对于提前停止,评估需要至少一个数据集和评估指标的主要内容,如果未能解决你的问题,请参考以下文章

Python 错误帮助:“ValueError:输入包含 NaN、无穷大或对于 dtype('float64') 来说太大的值。”

sklearn错误ValueError:输入包含NaN,无穷大或对于dtype('float64')来说太大的值

决策树回归错误-ValueError:输入包含 NaN、无穷大或对于 dtype('float32') 而言太大的值

ValueError: '对象对于所需数组来说太深'

Scipy IO Loadmat 错误:ValueError:Mat 4 mopt 格式错误

(原创)lightgbm 一些错误情况处理