用scikit学习线性模型约束系数总和
Posted
技术标签:
【中文标题】用scikit学习线性模型约束系数总和【英文标题】:Constraint the sum of coefficients with scikit learn linear model 【发布时间】:2017-12-01 02:06:39 【问题描述】:我正在做一个有 1000 个 coefs 的 LassoCV。 Statsmodels 似乎无法处理这么多的系数。所以我正在使用scikit学习。 Statsmodel 允许 .fit_constrained("coef1 + coef2...=1")。这将系数的总和限制为 = 1。我需要在 Scikit 中执行此操作。我也将截距保持为零。
from sklearn.linear_model import LassoCV
LassoCVmodel = LassoCV(fit_intercept=False)
LassoCVmodel.fit(x,y)
任何帮助将不胜感激。
【问题讨论】:
不支持。您要么需要从头开始编写一些东西,要么修改 sklearn,要么使用其他一些库。 我可以使用 sklearn.model_selection.GridSearchCV 和 fit_params 吗? 没有。这没有任何意义。 好的,谢谢@sascha 如果这个任务对你很重要,你可以很容易地在 cvxpy 中表述这个问题,并且解决的速度应该足够快(尽管你没有指定你有多少样本)。 【参考方案1】:我很惊讶之前没有人在 cmets 中说明过这一点,但我认为您的问题陈述中存在概念上的误解。
让我们从 Lasso Estimator 的定义开始,例如 Hastie、Tibshirani 和 Wainwright 在 Statistical Learning with Sparsity The Lasso and Generalizations 中给出的: p>
给定 N 个预测-响应对 (xi,yi) 的集合, lasso 为最小二乘找到拟合系数 (β0,βi) 具有附加约束的优化问题,即 L1 范数 系数向量的βi小于等于t。
其中系数向量的 L1-范数是所有系数的大小之和。 如果你的系数都是正数,这正好解决了你的问题。
现在,这个 t 和 scikit-learn 中使用的 alpha
参数之间有什么关系?好吧,事实证明,通过拉格朗日对偶,t 的每个值与alpha
的值之间存在一一对应关系。
这意味着当您使用LassoCV
时,由于您使用的是alpha
的值范围,因此根据定义,您使用的是所有系数总和的允许值范围!
总而言之,所有系数之和等于 1 的条件相当于使用 Lasso 获取特定值 alpha
。
【讨论】:
【参考方案2】:如 cmets 中所述:文档和来源并未表明 sklearn 支持此功能!
我刚刚尝试了使用现成的凸优化求解器的替代方案。这只是一种简单的类似原型的方法,它可能不适合您的(未完全定义的)任务(样本大小?)。
一些cmets:
实施/模型制定很容易 这个问题比我想象的更难解决 求解器 ECOS 遇到一般问题 求解器 SCS 达到良好的准确度(与 sklearn 相比更差) 但是:调整迭代以提高精度会破坏求解器 问题对于 SCS 来说是不可行的! 基于 SCS + bigM 的公式(约束在目标内作为惩罚项发布)看起来可用;但可能需要调整 仅测试了开源求解器,而商业求解器可能要好得多进一步尝试:
解决巨大的问题(与稳健性和准确性相比,性能变得更重要),(加速)投影随机梯度方法看起来很有前景代码
""" data """
from time import perf_counter as pc
import numpy as np
from sklearn import datasets
diabetes = datasets.load_diabetes()
A = diabetes.data
y = diabetes.target
alpha=0.1
print('Problem-size: ', A.shape)
def obj(x): # following sklearn's definition from user-guide!
return (1. / (2*A.shape[0])) * np.square(np.linalg.norm(A.dot(x) - y, 2)) + alpha * np.linalg.norm(x, 1)
""" sklearn """
print('\nsklearn classic l1')
from sklearn import linear_model
clf = linear_model.Lasso(alpha=alpha, fit_intercept=False)
t0 = pc()
clf.fit(A, y)
print('used (secs): ', pc() - t0)
print(obj(clf.coef_))
print('sum x: ', np.sum(clf.coef_))
""" cvxpy """
print('\ncvxpy + scs classic l1')
from cvxpy import *
x = Variable(A.shape[1])
objective = Minimize((1. / (2*A.shape[0])) * sum_squares(A*x - y) + alpha * norm(x, 1))
problem = Problem(objective, [])
t0 = pc()
problem.solve(solver=SCS, use_indirect=False, max_iters=10000, verbose=False)
print('used (secs): ', pc() - t0)
print(obj(x.value.flat))
print('sum x: ', np.sum(x.value.flat))
""" cvxpy -> sum x == 1 """
print('\ncvxpy + scs sum == 1 / 1st approach')
objective = Minimize((1. / (2*A.shape[0])) * sum_squares(A*x - y))
constraints = [sum(x) == 1]
problem = Problem(objective, constraints)
t0 = pc()
problem.solve(solver=SCS, use_indirect=False, max_iters=10000, verbose=False)
print('used (secs): ', pc() - t0)
print(obj(x.value.flat))
print('sum x: ', np.sum(x.value.flat))
""" cvxpy approach 2 -> sum x == 1 """
print('\ncvxpy + scs sum == 1 / 2nd approach')
M = 1e6
objective = Minimize((1. / (2*A.shape[0])) * sum_squares(A*x - y) + M*(sum(x) - 1))
constraints = [sum(x) == 1]
problem = Problem(objective, constraints)
t0 = pc()
problem.solve(solver=SCS, use_indirect=False, max_iters=10000, verbose=False)
print('used (secs): ', pc() - t0)
print(obj(x.value.flat))
print('sum x: ', np.sum(x.value.flat))
输出
Problem-size: (442, 10)
sklearn classic l1
used (secs): 0.001451024380348898
13201.3508496
sum x: 891.78869298
cvxpy + scs classic l1
used (secs): 0.011165673357417458
13203.6549995
sum x: 872.520510561
cvxpy + scs sum == 1 / 1st approach
used (secs): 0.15350853891775978
13400.1272148
sum x: -8.43795102327
cvxpy + scs sum == 1 / 2nd approach
used (secs): 0.012579569383536493
13397.2932976
sum x: 1.01207061047
编辑
只是为了好玩,我使用加速投影梯度的方法实现了一个缓慢的非优化原型求解器(代码中的注释!)。
尽管这里的行为很慢(因为没有优化),但对于大问题(因为它是一阶方法),这个应该可以更好地扩展。应该有很大的潜力!
警告: 对某些人来说可能被视为高级数值优化 :-)
编辑 2:我忘记在投影上添加非负约束(sum(x) == 1 如果 x 可以是非负的,则没有多大意义!) .这使解决变得更加困难(数值问题),很明显,应该使用其中一种快速的专用投影(我现在太懒了;我认为 n*log n 算法可用)。再说一遍:这个 APG 求解器是一个原型,还不能用于实际任务。
代码
""" accelerated pg -> sum x == 1 """
def solve_pg(A, b, momentum=0.9, maxiter=1000):
""" remarks:
algorithm: accelerated projected gradient
projection: proj on probability-simplex
-> naive and slow using cvxpy + ecos
line-search: armijo-rule along projection-arc (Bertsekas book)
-> suffers from slow projection
stopping-criterion: naive
gradient-calculation: precomputes AtA
-> not needed and not recommended for huge sparse data!
"""
M, N = A.shape
x = np.zeros(N)
AtA = A.T.dot(A)
Atb = A.T.dot(b)
stop_count = 0
# projection helper
x_ = Variable(N)
v_ = Parameter(N)
objective_ = Minimize(0.5 * square(norm(x_ - v_, 2)))
constraints_ = [sum(x_) == 1]
problem_ = Problem(objective_, constraints_)
def gradient(x):
return AtA.dot(x) - Atb
def obj(x):
return 0.5 * np.linalg.norm(A.dot(x) - b)**2
it = 0
while True:
grad = gradient(x)
# line search
alpha = 1
beta = 0.5
sigma=1e-2
old_obj = obj(x)
while True:
new_x = x - alpha * grad
new_obj = obj(new_x)
if old_obj - new_obj >= sigma * grad.dot(x - new_x):
break
else:
alpha *= beta
x_old = x[:]
x = x - alpha*grad
# projection
v_.value = x
problem_.solve()
x = np.array(x_.value.flat)
y = x + momentum * (x - x_old)
if np.abs(old_obj - obj(x)) < 1e-2:
stop_count += 1
else:
stop_count = 0
if stop_count == 3:
print('early-stopping @ it: ', it)
return x
it += 1
if it == maxiter:
return x
print('\n acc pg')
t0 = pc()
x = solve_pg(A, y)
print('used (secs): ', pc() - t0)
print(obj(x))
print('sum x: ', np.sum(x))
输出
acc pg
early-stopping @ it: 367
used (secs): 0.7714511330487027
13396.8642379
sum x: 1.00000000002
【讨论】:
哇,这非常有用。感谢您抽出宝贵时间。以上是关于用scikit学习线性模型约束系数总和的主要内容,如果未能解决你的问题,请参考以下文章
机器学习系列6 使用Scikit-learn构建回归模型:简单线性回归多项式回归与多元线性回归