使用交叉验证评估逻辑回归
Posted
技术标签:
【中文标题】使用交叉验证评估逻辑回归【英文标题】:Evaluating Logistic regression with cross validation 【发布时间】:2017-01-02 22:51:53 【问题描述】:我想使用交叉验证来测试/训练我的数据集,并评估逻辑回归模型在整个数据集上的性能,而不仅仅是在测试集上(例如 25%)。
这些概念对我来说是全新的,我不太确定这样做是否正确。如果有人能就我出错的正确步骤向我提供建议,我将不胜感激。我的部分代码如下所示。
另外,如何在与当前图表相同的图表上绘制“y2”和“y3”的 ROC?
谢谢
import pandas as pd
Data=pd.read_csv ('C:\\Dataset.csv',index_col='SNo')
feature_cols=['A','B','C','D','E']
X=Data[feature_cols]
Y=Data['Status']
Y1=Data['Status1'] # predictions from elsewhere
Y2=Data['Status2'] # predictions from elsewhere
from sklearn.linear_model import LogisticRegression
logreg=LogisticRegression()
logreg.fit(X_train,y_train)
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
from sklearn import metrics, cross_validation
predicted = cross_validation.cross_val_predict(logreg, X, y, cv=10)
metrics.accuracy_score(y, predicted)
from sklearn.cross_validation import cross_val_score
accuracy = cross_val_score(logreg, X, y, cv=10,scoring='accuracy')
print (accuracy)
print (cross_val_score(logreg, X, y, cv=10,scoring='accuracy').mean())
from nltk import ConfusionMatrix
print (ConfusionMatrix(list(y), list(predicted)))
#print (ConfusionMatrix(list(y), list(yexpert)))
# sensitivity:
print (metrics.recall_score(y, predicted) )
import matplotlib.pyplot as plt
probs = logreg.predict_proba(X)[:, 1]
plt.hist(probs)
plt.show()
# use 0.5 cutoff for predicting 'default'
import numpy as np
preds = np.where(probs > 0.5, 1, 0)
print (ConfusionMatrix(list(y), list(preds)))
# check accuracy, sensitivity, specificity
print (metrics.accuracy_score(y, predicted))
#ROC CURVES and AUC
# plot ROC curve
fpr, tpr, thresholds = metrics.roc_curve(y, probs)
plt.plot(fpr, tpr)
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.0])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate)')
plt.show()
# calculate AUC
print (metrics.roc_auc_score(y, probs))
# use AUC as evaluation metric for cross-validation
from sklearn.cross_validation import cross_val_score
logreg = LogisticRegression()
cross_val_score(logreg, X, y, cv=10, scoring='roc_auc').mean()
【问题讨论】:
【参考方案1】:你几乎是对的。 cross_validation.cross_val_predict
为您提供整个数据集的预测。您只需要在代码的前面删除logreg.fit
。具体来说,它的作用如下:
它将您的数据集划分为n
折叠,并且在每次迭代中,它将其中一个折叠作为测试集并在其余折叠(n-1
折叠)上训练模型。因此,最终您将获得对整个数据的预测。
让我们用 sklearn 中的一个内置数据集 iris 来说明这一点。该数据集包含 150 个具有 4 个特征的训练样本。 iris['data']
是 X
和 iris['target']
是 y
In [15]: iris['data'].shape
Out[15]: (150, 4)
要通过交叉验证获得对整个集合的预测,您可以执行以下操作:
from sklearn.linear_model import LogisticRegression
from sklearn import metrics, cross_validation
from sklearn import datasets
iris = datasets.load_iris()
predicted = cross_validation.cross_val_predict(LogisticRegression(), iris['data'], iris['target'], cv=10)
print metrics.accuracy_score(iris['target'], predicted)
Out [1] : 0.9537
print metrics.classification_report(iris['target'], predicted)
Out [2] :
precision recall f1-score support
0 1.00 1.00 1.00 50
1 0.96 0.90 0.93 50
2 0.91 0.96 0.93 50
avg / total 0.95 0.95 0.95 150
那么,回到您的代码。你只需要这个:
from sklearn import metrics, cross_validation
logreg=LogisticRegression()
predicted = cross_validation.cross_val_predict(logreg, X, y, cv=10)
print metrics.accuracy_score(y, predicted)
print metrics.classification_report(y, predicted)
要在多类分类中绘制 ROC,您可以关注this tutorial,它会为您提供如下内容:
总的来说,sklearn 有非常好的教程和文档。我强烈推荐阅读他们的tutorial on cross_validation。
【讨论】:
ImportError: 无法从“sklearn”导入名称“cross_validation”。 - scikit-learn.org/stable/modules/… 虽然有 cross_val_score,但没有 cross_validation 使用 'from sklearn.model_selection import cross_val_predict' 来解决这个问题以上是关于使用交叉验证评估逻辑回归的主要内容,如果未能解决你的问题,请参考以下文章
在 sklearn 中使用交叉验证和 AUC-ROC 进行逻辑回归模型
Python 中的逻辑回归和交叉验证(使用 sklearn)