在给定 x,y,z 坐标时使用 DBSCAN 算法对 3D 点进行聚类
Posted
技术标签:
【中文标题】在给定 x,y,z 坐标时使用 DBSCAN 算法对 3D 点进行聚类【英文标题】:Clustering the 3D points when given the x,y,z coordinates using DBSCAN algorithm using python 【发布时间】:2019-09-27 11:34:00 【问题描述】:我正在尝试使用带有 python 的DBSCAN
算法在一些给定坐标的帮助下对一些 3D 点进行聚类。
ex:- 给定坐标如下
X Y Z
[-37.530 3.109 -16.452]
[40.247 5.483 -15.209]
[-31.920 12.584 -12.916]
[-32.760 14.072 -13.749]
[-37.100 1.953 -15.720]
[-32.143 12.990 -13.488]
[-41.077 4.651 -15.651]
[-34.219 13.611 -13.090]
[-33.117 15.875 -13.738] e.t.c
我对编程和搜索如何编写代码的示例脚本有点陌生。有人可以提供建议或示例吗? 提前非常感谢。
【问题讨论】:
Python: DBSCAN in 3 dimensional space的可能重复 是的,这行得通。非常感谢。 【参考方案1】:您可以使用sklearn.cluster.DBSCAN
。在你的情况下:
import numpy as np
import matplotlib.pyplot as plt
#%matplotlib inline
from mpl_toolkits.mplot3d import Axes3D
from sklearn.cluster import DBSCAN
data = np.array([[-37.530, 3.109, -16.452],
[40.247, 5.483, -15.209],
[-31.920, 12.584, -12.916],
[-32.760, 14.072, -13.749],
[-37.100, 1.953, -15.720],
[-32.143, 12.990, -13.488],
[-41.077, 4.651, -15.651],
[-34.219, 13.611, -13.090],
[-33.117, 15.875, -13.738]])
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(data[:,0], data[:,1], data[:,2], s=300)
ax.view_init(azim=200)
plt.show()
model = DBSCAN(eps=2.5, min_samples=2)
model.fit_predict(data)
pred = model.fit_predict(data)
fig = plt.figure()
ax = Axes3D(fig)
ax.scatter(data[:,0], data[:,1], data[:,2], c=model.labels_, s=300)
ax.view_init(azim=200)
plt.show()
print("number of cluster found: ".format(len(set(model.labels_))))
print('cluster for each point: ', model.labels_)
输出
聚类前 聚类后number of cluster found: 3
cluster for each point: [ 0 -1 1 1 0 1 -1 1 1]
【讨论】:
另外,您可以考虑使用在较大数据集上表现更好的 OPTICS 算法:scikit-learn.org/stable/modules/generated/…以上是关于在给定 x,y,z 坐标时使用 DBSCAN 算法对 3D 点进行聚类的主要内容,如果未能解决你的问题,请参考以下文章