两个 pandas MultiIndex 帧将每一行与每一行相乘
Posted
技术标签:
【中文标题】两个 pandas MultiIndex 帧将每一行与每一行相乘【英文标题】:Two pandas MultiIndex frames multiply every row with every row 【发布时间】:2017-07-18 14:54:58 【问题描述】:我需要将两个具有相同***别索引的 MultiIndexed 帧(例如 df1, df2
)相乘,这样对于每个***别索引,df1
的每一行都与 df2
的每一行元素相乘。我已经实现了以下示例,它可以满足我的要求,但它看起来很丑:
a = ['alpha', 'beta']
b = ['A', 'B', 'C']
c = ['foo', 'bar']
df1 = pd.DataFrame(np.random.randn(6, 4),
index=pd.MultiIndex.from_product(
[a, b],
names=['greek', 'latin']),
columns=['C1', 'C2', 'C3', 'C4'])
df2 = pd.DataFrame(
np.array([[1, 0, 1, 0], [1, 1, 1, 1], [0, 0, 0, 0], [0, 2, 0, 4]]),
index=pd.MultiIndex.from_product([a, c], names=['greek', 'foobar']),
columns=['C1', 'C2', 'C3', 'C4'])
df3 = pd.DataFrame(
columns=['greek', 'latin', 'foobar', 'C1', 'C2', 'C3', 'C4'])
for i in df1.index.get_level_values('greek').unique():
for j in df1.loc[i].index.get_level_values('latin').unique():
for k in df2.loc[i].index.get_level_values('foobar').unique():
df3 = df3.append(pd.Series([i, j, k],
index=['greek', 'latin', 'foobar']
).append(
df1.loc[i, j] * df2.loc[i, k]), ignore_index=True)
df3.set_index(['greek', 'latin', 'foobar'], inplace=True)
如您所见,代码非常手动,多次手动定义列等,最后设置索引。这是输入和optput。它们是正确的,正是我想要的:
df1:
C1 C2 C3 C4
greek latin
alpha A 0.208380 0.856373 -1.041598 1.219707
B 1.547903 -0.001023 0.918973 1.153554
C 0.195868 2.772840 0.060960 0.311247
beta A 0.690405 -1.258012 0.118000 -0.346677
B 0.488327 -1.206428 0.967658 1.198287
C 0.420098 -0.165721 0.626893 -0.377909,
df2:
C1 C2 C3 C4
greek foobar
alpha foo 1 0 1 0
bar 1 1 1 1
beta foo 0 0 0 0
bar 0 2 0 4
结果:
C1 C2 C3 C4
greek latin foobar
alpha A foo 0.208380 0.000000 -1.041598 0.000000
bar 0.208380 0.856373 -1.041598 1.219707
B foo 1.547903 -0.000000 0.918973 0.000000
bar 1.547903 -0.001023 0.918973 1.153554
C foo 0.195868 0.000000 0.060960 0.000000
bar 0.195868 2.772840 0.060960 0.311247
beta A foo 0.000000 -0.000000 0.000000 -0.000000
bar 0.000000 -2.516025 0.000000 -1.386708
B foo 0.000000 -0.000000 0.000000 0.000000
bar 0.000000 -2.412855 0.000000 4.793149
C foo 0.000000 -0.000000 0.000000 -0.000000
bar 0.000000 -0.331443 0.000000 -1.511638
提前致谢!
【问题讨论】:
【参考方案1】:这是没有 for 循环的代码。基本思想是扩展两个矩阵,使它们大小相同并且可以相乘。然后相乘……
代码:
# build an index from the three index columns
idx = [df1.index.get_level_values(col).unique() for col in columns[:2]
] + [df2.index.get_level_values(columns[2]).unique()]
size = [len(x) for x in idx]
index = pd.MultiIndex.from_product(idx, names=columns[:3])
# get the indices needed for df1 and df2
idx_a = np.indices((size[0] * size[1], size[2])).reshape(2, -1)
idx_b = np.indices((size[0], size[1] * size[2])).reshape(2, -1)
idx_1 = idx_a[0]
idx_2 = idx_a[1] + idx_b[0] * size[2]
# map the two frames into a multiply-able form
y1 = df1.values[idx_1, :]
y2 = df2.values[idx_2, :]
# multiply the two frames
df = pd.DataFrame(y1 * y2, index=index, columns=columns[3:])
测试数据:
import pandas as pd
import numpy as np
a = ['alpha', 'beta']
b = ['A', 'B', 'C']
c = ['foo', 'bar']
data_columns = ['C1', 'C2', 'C3', 'C4']
columns = ['greek', 'latin', 'foobar'] + data_columns
df1 = pd.DataFrame(np.random.randn(len(a) * len(b), len(data_columns)),
index=pd.MultiIndex.from_product(
[a,b], names=columns[0:2]),
columns=data_columns
)
df2 = pd.DataFrame(np.array([[1, 0, 1, 0],
[1, 1, 1, 1],
[0, 0, 0, 0],
[0, 2, 0, 4],
]),
index=pd.MultiIndex.from_product(
[a, c],
names=[columns[0], columns[2]]),
columns=data_columns
)
计时码:
def method1():
df3 = pd.DataFrame(columns=columns)
for i in df1.index.get_level_values('greek').unique():
for j in df1.loc[i].index.get_level_values('latin').unique():
for k in df2.loc[i].index.get_level_values('foobar').unique():
df3 = df3.append(pd.Series(
[i, j, k],
index=columns[:3]).append(
df1.loc[i, j] * df2.loc[i, k]), ignore_index=True)
df3.set_index(columns[:3], inplace=True)
return df3
def method2():
# build an index from the three index columns
idx = [df1.index.get_level_values(col).unique() for col in columns[:2]
] + [df2.index.get_level_values(columns[2]).unique()]
size = [len(x) for x in idx]
index = pd.MultiIndex.from_product(idx, names=columns[:3])
# get the indices needed for df1 and df2
idx_a = np.indices((size[0] * size[1], size[2])).reshape(2, -1)
idx_b = np.indices((size[0], size[1] * size[2])).reshape(2, -1)
idx_1 = idx_a[0]
idx_2 = idx_a[1] + idx_b[0] * size[2]
# map the two frames into a multiply-able form
y1 = df1.values[idx_1, :]
y2 = df2.values[idx_2, :]
# multiply the to frames
df4 = pd.DataFrame(y1 * y2, index=index, columns=columns[3:])
return df4
from timeit import timeit
print(timeit(method1, number=50))
print(timeit(method2, number=50))
结果:
7.96668368373
0.149504332128
【讨论】:
【参考方案2】:我创建了以下似乎可行并提供正确结果的解决方案。虽然斯蒂芬的答案仍然是最快的解决方案,但它足够接近但提供了很大的优势,它适用于任意 MultiIndexed 帧,而不是索引是列表乘积的帧。这是我需要解决的情况,尽管我提供的示例并未反映这一点。感谢 Stephen 为该案例提供了出色而快速的解决方案 - 当然从该代码中学到了一些东西!
代码:
dft = df2.swaplevel()
dft.sortlevel(level=0,inplace=True)
df5=pd.concat([df1*dft.loc[i,:] for i in dft.index.get_level_values('foobar').unique() ], keys=dft.index.get_level_values('foobar').unique().tolist(), names=['foobar'])
df5=df5.reorder_levels(['greek', 'latin', 'foobar'],axis=0)
df5.sortlevel(0,inplace=True)
测试数据:
import pandas as pd
import numpy as np
a = ['alpha', 'beta']
b = ['A', 'B', 'C']
c = ['foo', 'bar']
data_columns = ['C1', 'C2', 'C3', 'C4']
columns = ['greek', 'latin', 'foobar'] + data_columns
df1 = pd.DataFrame(np.random.randn(len(a) * len(b), len(data_columns)),
index=pd.MultiIndex.from_product(
[a,b], names=columns[0:2]),
columns=data_columns
)
df2 = pd.DataFrame(np.array([[1, 0, 1, 0],
[1, 1, 1, 1],
[0, 0, 0, 0],
[0, 2, 0, 4],
]),
index=pd.MultiIndex.from_product(
[a, c],
names=[columns[0], columns[2]]),
columns=data_columns
)
计时码:
def method1():
df3 = pd.DataFrame(columns=columns)
for i in df1.index.get_level_values('greek').unique():
for j in df1.loc[i].index.get_level_values('latin').unique():
for k in df2.loc[i].index.get_level_values('foobar').unique():
df3 = df3.append(pd.Series(
[i, j, k],
index=columns[:3]).append(
df1.loc[i, j] * df2.loc[i, k]), ignore_index=True)
df3.set_index(columns[:3], inplace=True)
return df3
def method2():
# build an index from the three index columns
idx = [df1.index.get_level_values(col).unique() for col in columns[:2]
] + [df2.index.get_level_values(columns[2]).unique()]
size = [len(x) for x in idx]
index = pd.MultiIndex.from_product(idx, names=columns[:3])
# get the indices needed for df1 and df2
idx_a = np.indices((size[0] * size[1], size[2])).reshape(2, -1)
idx_b = np.indices((size[0], size[1] * size[2])).reshape(2, -1)
idx_1 = idx_a[0]
idx_2 = idx_a[1] + idx_b[0] * size[2]
# map the two frames into a multiply-able form
y1 = df1.values[idx_1, :]
y2 = df2.values[idx_2, :]
# multiply the to frames
df4 = pd.DataFrame(y1 * y2, index=index, columns=columns[3:])
return df4
def method3():
dft = df2.swaplevel()
dft.sortlevel(level=0,inplace=True)
df5=pd.concat([df1*dft.loc[i,:] for i in dft.index.get_level_values('foobar').unique() ], keys=dft.index.get_level_values('foobar').unique().tolist(), names=['foobar'])
df5=df5.reorder_levels(['greek', 'latin', 'foobar'],axis=0)
df5.sortlevel(0,inplace=True)
return df5
from timeit import timeit
print(timeit(method1, number=50))
print(timeit(method2, number=50))
print(timeit(method3, number=50))
结果:
4.089807642158121
0.12291539693251252
0.33667341712862253
【讨论】:
以上是关于两个 pandas MultiIndex 帧将每一行与每一行相乘的主要内容,如果未能解决你的问题,请参考以下文章
pandas:将两个 DataFrame 与已排序的 MultiIndex 连接起来,使得结果具有已排序的 MultiIndex
合并两个 pandas.core.indexes.multi.MultiIndex
在 Pandas 中将两个 MultiIndex 级别合并为一个