Seaborn Facetgrid 中热图的变化
Posted
技术标签:
【中文标题】Seaborn Facetgrid 中热图的变化【英文标题】:Plots shifting in heatmaps in Seaborn Facetgrid 【发布时间】:2019-01-23 09:30:02 【问题描述】:提前抱歉图片的数量,但它们有助于证明问题
我已经建立了一个数据框,其中包含膜厚度测量值,用于多个基材、多个层,作为坐标的函数:
| | Sub | Result | Layer | Row | Col |
|----|-----|--------|-------|-----|-----|
| 0 | 1 | 2.95 | 3 - H | 0 | 72 |
| 1 | 1 | 2.97 | 3 - V | 0 | 72 |
| 2 | 1 | 0.96 | 1 - H | 0 | 72 |
| 3 | 1 | 3.03 | 3 - H | -42 | 48 |
| 4 | 1 | 3.04 | 3 - V | -42 | 48 |
| 5 | 1 | 1.06 | 1 - H | -42 | 48 |
| 6 | 1 | 3.06 | 3 - H | 42 | 48 |
| 7 | 1 | 3.09 | 3 - V | 42 | 48 |
| 8 | 1 | 1.38 | 1 - H | 42 | 48 |
| 9 | 1 | 3.05 | 3 - H | -21 | 24 |
| 10 | 1 | 3.08 | 3 - V | -21 | 24 |
| 11 | 1 | 1.07 | 1 - H | -21 | 24 |
| 12 | 1 | 3.06 | 3 - H | 21 | 24 |
| 13 | 1 | 3.09 | 3 - V | 21 | 24 |
| 14 | 1 | 1.05 | 1 - H | 21 | 24 |
| 15 | 1 | 3.01 | 3 - H | -63 | 0 |
| 16 | 1 | 3.02 | 3 - V | -63 | 0 |
这将持续超过 10 个潜艇(每批),每个潜艇 13 个站点,以及 3 层 - 这个df
是一个复合体。
我正在尝试将数据呈现为热图的 facetgrid(改编代码来自 How to make heatmap square in Seaborn FacetGrid - 谢谢!)
我可以很高兴地绘制df
的一个子集:
spam = df.loc[df.Sub== 6].loc[df.Layer == '3 - H']
spam_p= spam.pivot(index='Row', columns='Col', values='Result')
sns.heatmap(spam_p, cmap="plasma")
但是 - 有一些缺失的结果,其中层测量错误(返回“10000”)所以我用 NaN 替换了这些:
df.Result.replace(10000, np.nan)
为了绘制一个 facetgrid 以显示所有子/层,我编写了以下代码:
def draw_heatmap(*args, **kwargs):
data = kwargs.pop('data')
d = data.pivot(columns=args[0], index=args[1],
values=args[2])
sns.heatmap(d, **kwargs)
fig = sns.FacetGrid(spam, row='Wafer',
col='Feature', height=5, aspect=1)
fig.map_dataframe(draw_heatmap, 'Col', 'Row', 'Result', cbar=False, cmap="plasma", annot=True, annot_kws="size": 20)
产生:
它已自动调整轴以不显示任何存在 NaN 的位置。
我尝试过屏蔽(参见https://github.com/mwaskom/seaborn/issues/375),但Inconsistent shape between the condition and the input (got (237, 15) and (7, 7))
出现错误。
结果是,当不使用裁剪后的数据集时(即df
而不是spam
,代码会生成以下 Facetgrid):
在极端(边缘)坐标位置具有缺失值的绘图使绘图在轴内移动 - 这里显然都在左上角。 Sub #5,第 3-H 层应如下所示:
即有NaN
s的地方留空。
为什么 facetgrid 将整个绘图向上和/或向左移动?另一种方法是根据子/层数动态生成子图(啊!)。
非常感谢您的任何帮助。
2 层 sub 5 的完整数据集:
Sub Result Layer Row Col
0 5 2.987 3 - H 0 72
1 5 0.001 1 - H 0 72
2 5 1.184 3 - H -42 48
3 5 1.023 1 - H -42 48
4 5 3.045 3 - H 42 48
5 5 0.282 1 - H 42 48
6 5 3.083 3 - H -21 24
7 5 0.34 1 - H -21 24
8 5 3.07 3 - H 21 24
9 5 0.41 1 - H 21 24
10 5 NaN 3 - H -63 0
11 5 NaN 1 - H -63 0
12 5 3.086 3 - H 0 0
13 5 0.309 1 - H 0 0
14 5 0.179 3 - H 63 0
15 5 0.455 1 - H 63 0
16 5 3.067 3 - H -21 -24
17 5 0.136 1 - H -21 -24
18 5 1.907 3 - H 21 -24
19 5 1.018 1 - H 21 -24
20 5 NaN 3 - H -42 -48
21 5 NaN 1 - H -42 -48
22 5 NaN 3 - H 42 -48
23 5 NaN 1 - H 42 -48
24 5 NaN 3 - H 0 -72
25 5 NaN 1 - H 0 -72
【问题讨论】:
我该如何测试这个? “sub”和“wafer”一样吗?什么最小数据集可以重现该问题? 是的 - 抱歉,这里有多个命名约定,我已经把这个问题放在一起来问这个问题。子 == 晶圆。 我将进行编辑以帮助生成测试数据集... 我添加了一个完整的数据集;但是,您总是可以多次使用这些数据来模拟多个潜艇(显然)。如果你这样做 - 包含更多(假)值可能是一个好主意,以强制使用不同/新的位置,即。用值替换一些 NaN。 【参考方案1】:您可以创建唯一列和行标签的列表,并使用它们重新索引数据透视表。
cols = df["Col"].unique()
rows = df["Row"].unique()
pivot = data.pivot(...).reindex_axis(cols, axis=1).reindex_axis(rows, axis=0)
如在this answer 中看到的那样。
一些完整的代码:
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
r = np.repeat([0,-2,2,-1,1,-3],2)
row = np.concatenate((r, [0]*2, -r[::-1]))
c = np.array([72]*2+[48]*4 + [24]*4 + [0]* 3)
col = np.concatenate((c,-c[::-1]))
df = pd.DataFrame("Result" : np.random.rand(26),
"Layer" : list("AB")*13,
"Row" : row, "Col" : col)
df1 = df.copy()
df1["Sub"] = [5]*len(df1)
df1.at[10:11,"Result"] = np.NaN
df1.at[20:,"Result"] = np.NaN
df2 = df.copy()
df2["Sub"] = [3]*len(df2)
df2.at[0:2,"Result"] = np.NaN
df = pd.concat([df1,df2])
cols = np.unique(df["Col"].values)
rows = np.unique(df["Row"].values)
def draw_heatmap(*args, **kwargs):
data = kwargs.pop('data')
d = data.pivot(columns=args[0], index=args[1],
values=args[2])
d = d.reindex_axis(cols, axis=1).reindex_axis(rows, axis=0)
print d
sns.heatmap(d, **kwargs)
grid = sns.FacetGrid(df, row='Sub', col='Layer', height=3.5, aspect=1 )
grid.map_dataframe(draw_heatmap, 'Col', 'Row', 'Result', cbar=False,
cmap="plasma", annot=True)
plt.show()
【讨论】:
非常感谢 - 让我头疼不已。如果我理解正确,您的解决方案解释了为什么这些图的漂移不同;它们每个都需要为 col/rows 重新索引。并特别感谢您提供完整的代码,这对于查看一些专业级的方法来解决我的问题非常有帮助!真的很感激。以上是关于Seaborn Facetgrid 中热图的变化的主要内容,如果未能解决你的问题,请参考以下文章
使用数据框更改绘图 Seaborn Facetgrid 中同一行的线型
在 seaborn 中的特定位置画一条线/注释 Facetgrid
seaborn使用FacetGrid函数可视化山脊图(Ridgeline Plot with Seaborn)