根据最接近的日期时间合并两个数据框

Posted

技术标签:

【中文标题】根据最接近的日期时间合并两个数据框【英文标题】:merge two dataframes based on closest datetime 【发布时间】:2019-05-27 18:01:30 【问题描述】:

我有两个数据集,一个包含空气质量数据,一个包含天气数据,每个数据集都有一个名为“dt”的列,用于表示日期和时间。然而,这些时间并不完全匹配。我想加入这些表,以便保留空气质量数据,并匹配和合并天气数据的最接近时间。

df_aq:

                  dt   Latitude  Longitude  ...   Speed_kmh  PM2.5  PM10
0    11/20/2018 12:16  33.213922 -97.151055  ...        0.35   16.0  86.1
1    11/20/2018 12:16  33.213928 -97.151007  ...        5.01   16.0  86.1
2    11/20/2018 12:16  33.213907 -97.150953  ...        5.27   16.0  86.1
3    11/20/2018 12:16  33.213872 -97.150883  ...        5.03   16.0  86.1
...
364  11/20/2018 12:46  33.209462 -97.148623  ...        0.00    2.8   6.3
365  11/20/2018 12:46  33.209462 -97.148623  ...        0.00    2.8   6.3
366  11/20/2018 12:46  33.209462 -97.148623  ...        0.00    2.8   6.3]

df_weather:

     USAF  WBAN               dt  DIR SPD ... PCP01  PCP06  PCP24  PCPXX
0  722589  3991  11/20/2018 0:53  360   6 ...     0  *****  *****  *****
1  722589  3991  11/20/2018 1:53  350   6 ...     0  *****  *****  *****
2  722589  3991  11/20/2018 2:53  310   3 ...     0  *****  *****  *****
3  722589  3991  11/20/2018 3:53  330   5 ...     0  *****  *****  *****
4  722589  3991  11/20/2018 4:53  310   6 ...     0  *****  *****  *****

df_aq 的范围为 12:16-12:46,并且 df_weather 在 53 分钟标记处每小时都有数据。因此最接近的时间是 11:53 和 12:53,所以我希望这两个时间和随后的天气数据与 df_aq 上的所有数据适当合并

我尝试过使用 iloc 和 Index.get_loc,因为这似乎是最好的方法,但我不断收到错误。

我试过了:

ctr = df_aq['dt'].count() - 1 
startTime = df_aq['dt'][0]
endTime = df_aq['dt'][ctr]
print df_weather.iloc[df_weather.index.get_loc(startTime,method='nearest') or df_weather.index.get_loc(endTime,method='nearest')]

然后我得到一个错误:

TypeError: unsupported operand type(s) for -: 'long' and 'str'

我不确定这个错误是什么意思

有没有比 iloc 更好的方法呢?如果没有,我在这段代码中做错了什么?

非常感谢您提供的任何帮助。

【问题讨论】:

检查pd.merge_asofdocs @Shannon 请提供您的数据集的链接。 【参考方案1】:

我冒昧地举一个我在学习过程中使用的例子:-),希望这将有助于实现您的目标。

如评论部分所述,您可以尝试使用特殊功能 merge_asof() 来合并时间序列数据帧

数据帧优先:

>>> df1
                     time ticker   price  quantity
0 2016-05-25 13:30:00.023   MSFT   51.95        75
1 2016-05-25 13:30:00.038   MSFT   51.95       155
2 2016-05-25 13:30:00.048   GOOG  720.77       100
3 2016-05-25 13:30:00.048   GOOG  720.92       100
4 2016-05-25 13:30:00.048   AAPL   98.00       100

DataFrame 秒:

>>> df2
                     time ticker     bid     ask
0 2016-05-25 13:30:00.023   GOOG  720.50  720.93
1 2016-05-25 13:30:00.023   MSFT   51.95   51.96
2 2016-05-25 13:30:00.030   MSFT   51.97   51.98
3 2016-05-25 13:30:00.041   MSFT   51.99   52.00
4 2016-05-25 13:30:00.048   GOOG  720.50  720.93
5 2016-05-25 13:30:00.049   AAPL   97.99   98.01
6 2016-05-25 13:30:00.072   GOOG  720.50  720.88
7 2016-05-25 13:30:00.075   MSFT   52.01   52.03


>>> new_df = pd.merge_asof(df1, df2, on='time', by='ticker')

>>> new_df
                     time ticker   price  quantity     bid     ask
0 2016-05-25 13:30:00.023   MSFT   51.95        75   51.95   51.96
1 2016-05-25 13:30:00.038   MSFT   51.95       155   51.97   51.98
2 2016-05-25 13:30:00.048   GOOG  720.77       100  720.50  720.93
3 2016-05-25 13:30:00.048   GOOG  720.92       100  720.50  720.93
4 2016-05-25 13:30:00.048   AAPL   98.00       100     NaN     NaN

查看文档Doc merge_asof

【讨论】:

以上是关于根据最接近的日期时间合并两个数据框的主要内容,如果未能解决你的问题,请参考以下文章

如何根据日期列合并两个数据框?

Python合并两个具有不同日期时间的数据框[重复]

熊猫:如何在偏移日期合并两个数据框?

Pandas - 如何在不同格式的日期时间列上合并数据框?

将两个不相等的数据框与两个索引(日期时间和日期)上的部分公共元素合并

R-基于最近日期合并数据框