使用 NaN 在 pandas 中按列对数据进行 Winsorizing
Posted
技术标签:
【中文标题】使用 NaN 在 pandas 中按列对数据进行 Winsorizing【英文标题】:Winsorizing data by column in pandas with NaN 【发布时间】:2018-11-09 17:54:52 【问题描述】:我想对 pandas 数据框中的几列数据进行 Winsorize。每列都有一些NaN,这会影响winsorization,因此需要将它们删除。我知道如何做到这一点的唯一方法是为 all 的数据删除它们,而不是仅逐列删除它们。
MWE:
import numpy as np
import pandas as pd
from scipy.stats.mstats import winsorize
# Create Dataframe
N, M, P = 10**5, 4, 10**2
dates = pd.date_range('2001-01-01', periods=N//P, freq='D').repeat(P)
df = pd.DataFrame(np.random.random((N, M))
, index=dates)
df.index.names = ['DATE']
df.columns = ['one','two','three','four']
# Now scale them differently so you can see the winsorization
df['four'] = df['four']*(10**5)
df['three'] = df['three']*(10**2)
df['two'] = df['two']*(10**-1)
df['one'] = df['one']*(10**-4)
# Create NaN
df.loc[df.index.get_level_values(0).year == 2002,'three'] = np.nan
df.loc[df.index.get_level_values(0).month == 2,'two'] = np.nan
df.loc[df.index.get_level_values(0).month == 1,'one'] = np.nan
这是基线分布:
df.quantile([0, 0.01, 0.5, 0.99, 1])
输出:
one two three four
0.00 2.336618e-10 2.294259e-07 0.002437 2.305353
0.01 9.862626e-07 9.742568e-04 0.975807 1003.814520
0.50 4.975859e-05 4.981049e-02 50.290946 50374.548980
0.99 9.897463e-05 9.898590e-02 98.978263 98991.438985
1.00 9.999983e-05 9.999966e-02 99.996793 99999.437779
这就是我的winsorizing方式:
def using_mstats(s):
return winsorize(s, limits=[0.01, 0.01])
wins = df.apply(using_mstats, axis=0)
wins.quantile([0, 0.01, 0.25, 0.5, 0.75, 0.99, 1])
这给出了这个:
Out[356]:
one two three four
0.00 0.000001 0.001060 1.536882 1003.820149
0.01 0.000001 0.001060 1.536882 1003.820149
0.25 0.000025 0.024975 25.200378 25099.994780
0.50 0.000050 0.049810 50.290946 50374.548980
0.75 0.000075 0.074842 74.794537 75217.343920
0.99 0.000099 0.098986 98.978263 98991.436957
1.00 0.000100 0.100000 99.996793 98991.436957
列four
是正确的,因为它没有NaN
,但其他列不正确。第 99 个百分位和 Max 应该相同。两者的观察计数相同:
In [357]: df.count()
Out[357]:
one 90700
two 91600
three 63500
four 100000
dtype: int64
In [358]: wins.count()
Out[358]:
one 90700
two 91600
three 63500
four 100000
dtype: int64
这是我可以“解决”它的方法,但代价是丢失了大量数据:
wins2 = df.loc[df.notnull().all(axis=1)].apply(using_mstats, axis=0)
wins2.quantile([0, 0.01, 0.25, 0.5, 0.75, 0.99, 1])
输出:
Out[360]:
one two three four
0.00 9.686203e-07 0.000928 0.965702 1005.209503
0.01 9.686203e-07 0.000928 0.965702 1005.209503
0.25 2.486052e-05 0.024829 25.204032 25210.837443
0.50 4.980946e-05 0.049894 50.299004 50622.227179
0.75 7.492750e-05 0.075059 74.837900 75299.906415
0.99 9.895563e-05 0.099014 98.972310 99014.311761
1.00 9.895563e-05 0.099014 98.972310 99014.311761
In [361]: wins2.count()
Out[361]:
one 51700
two 51700
three 51700
four 51700
dtype: int64
如何在保持数据形状(即不删除行)的同时按列对不是 NaN 的数据进行 Winsorize?
【问题讨论】:
【参考方案1】:正如经常发生的那样,简单地创建 MWE 有助于澄清。我需要将 clip() 与 quantile() 结合使用,如下所示:
df2 = df.clip(lower=df.quantile(0.01), upper=df.quantile(0.99), axis=1)
df2.quantile([0, 0.01, 0.25, 0.5, 0.75, 0.99, 1])
输出:
one two three four
0.00 9.862626e-07 0.000974 0.975807 1003.814520
0.01 9.862666e-07 0.000974 0.975816 1003.820092
0.25 2.485043e-05 0.024975 25.200378 25099.994780
0.50 4.975859e-05 0.049810 50.290946 50374.548980
0.75 7.486737e-05 0.074842 74.794537 75217.343920
0.99 9.897462e-05 0.098986 98.978245 98991.436977
1.00 9.897463e-05 0.098986 98.978263 98991.438985
In [384]: df2.count()
Out[384]:
one 90700
two 91600
three 63500
four 100000
dtype: int64
这些数字与上面的不同,因为我维护了每一列中没有丢失 (NaN) 的所有数据。
【讨论】:
以上是关于使用 NaN 在 pandas 中按列对数据进行 Winsorizing的主要内容,如果未能解决你的问题,请参考以下文章
在 Bootstrap-Vue 中按列对 <b-table> 进行排序并禁止用户排序