寻找更高效的熊猫代码使用 BLS 数据集
Posted
技术标签:
【中文标题】寻找更高效的熊猫代码使用 BLS 数据集【英文标题】:Looking for a more efficiency pandas code use BLS data set 【发布时间】:2020-07-01 07:05:34 【问题描述】:寻找一种更有效的方法来为 Kmeans 分析准备数据。使用 BLS(劳工统计局)并尝试学习 Kmeans,我正在执行数据的第一次传递,并希望添加两列,即平均工资和手提袋就业率随时间变化的百分比。该公式是一个简单的 (((当前年份、州和 occ_code) 减去 (这 14 个数据点的最小值) / 除以 (same min) ... (( 当前年份、occ_code - min) / min *100),向数据框添加两列。数据集是约 500K 行乘 24 列。代码每分钟运行大约 400 行....当前预计需要大约 24 小时才能完全运行,因此是这个问题。谢谢
样本数据在这里:
任何列都可以,我只使用 a_median 和 tot_emp
Unnamed: 0 area st state occ_code occ_title tot_emp emp_prse h_mean a_mean ... h_pct75 h_pct90 a_pct10 a_pct25 a_median a_pct75 a_pct90 year tot_emp_growth a_median_growth
128037 128037 31 NE Nebraska 25-2022 Middle school teachers, except special and voc... 3720 4.9 0 45270 ... 0 0 32850 37160 44220 53170 62120 2008 25.566343 0.0
491755 491755 19 IA Iowa 47-2131 Insulation Workers, Floor, Ceiling, and Wall 360 18 19.59 40750 ... 23.56 27.98 27160 32230 38920 49010 58190 2018 25.566343 0.0
470924 470924 42 PA Pennsylvania 19-1021 Biochemists and Biophysicists 1330 24 43.69 90880 ... 50.04 67.42 52300 64700 84400 104070 140240 2017 25.566343 0.0
267336 267336 20 KS Kansas 39-4031 Morticians, Undertakers, and Funeral Directors 460 25.4 16.6 34540 ... 23.98 27.83 20400 21730 23950 49880 57890 2012 25.566343 0.0
491263 491263 19 IA Iowa 11-9033 Education Administrators, Postsecondary 2360 6.8 51.81 107760 ... 61.22 86.07 52120 68670 93650 127330 179020 2018 25.566343 0.0
5 rows × 24 columns
目前正在测试的代码是:
def occ_code_growths(df):
for i in range(len(df)):
cols_lit = ['year', 'occ_code', 'st' , 'tot_emp', 'a_median']
df_lookup = df.lookup(list([df.index[i]]*len(cols_lit)), cols_lit)
idx_emp_min = df[(df['occ_code'] == df_lookup[1]) & (df['st'] == df_lookup[2]) ]\
['tot_emp'].values.astype(int).min()
idx_median_min = df[(df['occ_code'] == df_lookup[1]) & (df['st'] == df_lookup[2]) ]\
['a_median'].values.astype(int).min()
idx_emp = df[(df['occ_code'] == df_lookup[1]) & (df['st'] == df_lookup[2]) \
& (df['year'] == df_lookup[0]) ]['tot_emp'].values.astype(int)
idx_median = df[(df['occ_code'] == df_lookup[1]) & (df['st'] == df_lookup[2]) \
& (df['year'] == df_lookup[0]) ]['a_median'].values.astype(int)
df['tot_emp_growth'] = float((((idx_emp - idx_emp_min) / idx_emp_min) * 100)[0])
df['a_median_growth'] = float((((idx_median - idx_median_min) / idx_median_min) * 100)[0])
if i % 200 == 0 :
print(df.index[i])
return(df)
df_4 = occ_code_growths(df)
df_4.to_csv('./data/kmeans.csv')
【问题讨论】:
【参考方案1】:对于大约 500K 行乘 25 列的代码,这是更简洁但仍然很慢的代码。仍然需要几个小时。如果有人有更快的答案,请分享。
df_6 =[[]]
def occ_code_growths(df, df_6):
df_occ_unique = df.occ_code.unique()
# print(df_occ_unique)
df_st_unique = df.st.unique()
# print(df_st_unique)
df_year_unique = df.year.unique()
# print(df_yr_unique)
df_6 = pd.DataFrame( 'idx_row': [], 'tot_growth': [], 'median_growth': [], 'code': [], 'st': [], 'yr': [])
# for i in range(len(df)):
# print('i',i)
for code in range(len(df_occ_unique)):
# print('code',code)
for st in range(len(df_st_unique)):
# print('st',st)
try:
idx_emp_min = df[(df['occ_code'] == df_occ_unique[code]) & (df['st'] == df_st_unique[st]) ]['tot_emp'].values.astype(int).min()
idx_median_min = df[(df['occ_code'] == df_occ_unique[code]) & (df['st'] == df_st_unique[st]) ]['a_median'].values.astype(int).min()
except:
print('Error with', tot_emp_growth, a_median_growth, df_occ_unique[code], df_st_unique[st], df_year_unique[yr].astype(int) )
for yr in range(len(df_year_unique)):
# print('yr',yr)
try:
idx_emp = df[(df['occ_code'] == df_occ_unique[code]) & (df['st'] == df_st_unique[st]) \
& (df['year'] == df_year_unique[yr]) ]['tot_emp'].values.astype(int)
idx_median = df[(df['occ_code'] == df_occ_unique[code]) & (df['st'] == df_st_unique[st]) \
& (df['year'] == df_year_unique[yr]) ]['a_median'].values.astype(int)
idx_row = df[(df['occ_code'] == df_occ_unique[code]) & (df['st'] == df_st_unique[st]) \
& (df['year'] == df_year_unique[yr]) ].index.values.astype(int)
except:
print('Error with', tot_emp_growth, a_median_growth, df_occ_unique[code], df_st_unique[st], df_year_unique[yr].astype(int) )
try:
tot_emp_growth = float((((idx_emp - idx_emp_min) / idx_emp_min) * 100)[0])
a_median_growth = float((((idx_median - idx_median_min) / idx_median_min) * 100)[0])
df_6 = df_6.append('idx_row': idx_row, 'tot_growth': tot_emp_growth, \
'median_growth': a_median_growth, 'code': df_occ_unique[code], \
'st': df_st_unique[st], 'yr': df_year_unique[yr].astype(int) , ignore_index=True)
except:
print('Error with', tot_emp_growth, a_median_growth, df_occ_unique[code], df_st_unique[st], df_year_unique[yr].astype(int) )
# print(df_6)
# if i % 200 == 0 :
# print(df.index[i])
return(df, df_6)
df_5, df_7 = occ_code_growths(df, df_6)
【讨论】:
以上是关于寻找更高效的熊猫代码使用 BLS 数据集的主要内容,如果未能解决你的问题,请参考以下文章