使用 OpenCV 检测视频中的基本变化
Posted
技术标签:
【中文标题】使用 OpenCV 检测视频中的基本变化【英文标题】:Detect Basic Change in Video using OpenCV 【发布时间】:2018-01-10 14:58:51 【问题描述】:尝试重新创建一个基本的变化检测程序,我从 Adrian Rosebrock 的一篇很棒的博客中获得(如果想了解 python 和 OpenCV,请点击此处)。该代码是用 python 设计的,我正在尝试将其转换为 C++。你可以找到博文here。我的斗争是absdiff(firsFrame, gray, imageDifference)
,因为循环的每次迭代都有 firstFrame 和 gray 相等。我认为问题出在我初始化firstFrame = gray
的位置,但我做了cout
检查以查看它被击中了多少次,所以不确定。这是代码:
int min_area = 500; //min area of motion detectable
//get camera operational and make sure working correctly
VideoCapture camera(0);
if(!camera.isOpened())
cout << "cannot open camera" << endl;
return(1);
Mat firstFrame, gray, imageDifference, thresh;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
while(true)
Mat frame;
camera.read(frame);
if(frame.empty())
cout << "frame was not captured" << endl;
return(2);
//pre processing
//resize(frame, frame, Size (1200,900));
cvtColor(frame, gray, COLOR_BGR2GRAY);
GaussianBlur(gray, gray, Size( 21, 21 ), 0, 0 );
//initrialize first frame if necessary
if(firstFrame.empty())
cout << "hit" << endl;
firstFrame = gray;
continue;
//get difference
absdiff(firstFrame, gray, imageDifference);
threshold(imageDifference, thresh, 25, 255, THRESH_BINARY);
//fill in holes
dilate(thresh, thresh, Mat(), Point(-1, -1), 2, 1, 1);
findContours(thresh, contours, hierarchy, CV_RETR_EXTERNAL, CV_CHAIN_APPROX_SIMPLE);
//loop over contours
for(int i = 0; i < contours.size(); i++)
//get the boundboxes and save the ROI as an Image
if (contourArea(contours[i]) < min_area)
continue;
Rect boundRect = boundingRect( Mat(contours[i]));
rectangle( frame, boundRect.tl(), boundRect.br(), (0,255,0), 1, 8, 0 );
//draw everything
imshow("Security feed", frame);
imshow("Thresh", thresh);
imshow("Difference", imageDifference);
if (waitKey(30) >= 0)
break;
camera.release();
destroyAllWindows();
return(0);
【问题讨论】:
【参考方案1】:有待改进:
firstFrame = gray
=> gray.copyTo(firstFrame)
您在同一行定义firstFrame
和gray
,然后在执行firstFrame = gray
之后,它们共享相同的数据存储器。所以每次都是一样的。
跳过一些帧。
由于相机刚启动,所以第一帧不是那么稳定,你应该跳过一些帧(比如10帧)。
cv::Scalar 元组
在 C++ 中:
cv::Scalar(b,g,r) <==> tuple(b,g,r)
(b,g,r) ==> r
修改代码:
int cnt = 0;
while(true)
Mat frame;
camera.read(frame);
if(frame.empty())
cout << "frame was not captured" << endl;
return(2);
//pre processing
//resize(frame, frame, Size (1200,900));
cvtColor(frame, gray, COLOR_BGR2GRAY);
GaussianBlur(gray, gray, Size( 21, 21 ), 0, 0 );
//initrialize first frame if necessary
if(firstFrame.empty())
if(cnt<10)
++cnt;
else
cout << "hit" << endl;
gray.copyTo(firstFrame);
continue;
// ...
/// cv::Scalar(b,g,r) <==> tuple(b,g,r)
/// (b,g,r) ==> r
rectangle( frame, boundRect.tl(), boundRect.br(), Scalar(0,255,0), 1, 8, 0 );
// ...
【讨论】:
以上是关于使用 OpenCV 检测视频中的基本变化的主要内容,如果未能解决你的问题,请参考以下文章