如何有效地检索 Torch 张量中最大值的索引?
Posted
技术标签:
【中文标题】如何有效地检索 Torch 张量中最大值的索引?【英文标题】:How to efficiently retrieve the indices of maximum values in a Torch tensor? 【发布时间】:2019-04-12 05:49:54 【问题描述】:假设有一个火炬张量,例如以下形状:
x = torch.rand(20, 1, 120, 120)
我现在想要的是获取每个 120x120 矩阵的最大值的索引。为了简化问题,我首先将x.squeeze()
使用形状[20, 120, 120]
。然后我想得到火炬张量,它是一个形状为[20, 2]
的索引列表。
我怎样才能快速做到这一点?
【问题讨论】:
为什么需要[20, 2]
矩阵。您是否想要每个 120 * 120
矩阵的行最大值和列最大值?
是的,或者换句话说:对于 20 个120 * 120
矩阵中的每一个,我想要具有最大值的单元格的[x, y]
坐标
如果你想知道***k
元素的索引,使用torch.topk()。
这能回答你的问题吗? Extracting the top-k value-indices from a 1-D Tensor
【参考方案1】:
torch.topk() 是您正在寻找的。从文档中,
torch.topk
(input, k, dim=None, largest=True, sorted=True, out=None) -> (Tensor, LongTensor)
返回给定input
张量的k
最大元素
给定的维度。
如果没有给出dim
,则选择输入的最后一个维度。
如果largest
是False
,则返回k 个最小的元素。
返回一个 (values, indices) 的命名元组,其中索引是原始输入张量中元素的索引。
布尔选项sorted
如果True
,将确保返回的k个元素本身是排序的
【讨论】:
有用的功能知道,但它没有回答原来的问题。 OP 希望获得该矩阵中最大元素的 20 个 120x120 矩阵中的每一个的索引。也就是说,她想要 20 个 2D 坐标,每个矩阵一个。 topk 仅返回最大化维度中最大元素的索引。 请注意,topk 的文档在返回索引的含义方面存在混淆。它给人的印象是该函数为原始张量提供索引,而实际上它仅返回最大化维度的索引。请参阅试图澄清它的 pytorch 问题github.com/pytorch/pytorch/issues/50331#issue-782748956。【参考方案2】:如果我理解正确,您不需要值,而是需要索引。不幸的是,没有开箱即用的解决方案。有一个 argmax()
函数,但我看不出如何让它完全按照你的意愿去做。
所以这里有一个小变通方法,因为我们只是划分张量,所以效率应该还可以:
n = torch.tensor(4)
d = torch.tensor(4)
x = torch.rand(n, 1, d, d)
m = x.view(n, -1).argmax(1)
# since argmax() does only return the index of the flattened
# matrix block we have to calculate the indices by ourself
# by using / and % (// would also work, but as we are dealing with
# type torch.long / works as well
indices = torch.cat(((m / d).view(-1, 1), (m % d).view(-1, 1)), dim=1)
print(x)
print(indices)
n
代表您的第一个维度,d
代表最后两个维度。我在这里取较小的数字来显示结果。但当然这也适用于n=20
和d=120
:
n = torch.tensor(20)
d = torch.tensor(120)
x = torch.rand(n, 1, d, d)
m = x.view(n, -1).argmax(1)
indices = torch.cat(((m / d).view(-1, 1), (m % d).view(-1, 1)), dim=1)
#print(x)
print(indices)
这是n=4
和d=4
的输出:
tensor([[[[0.3699, 0.3584, 0.4940, 0.8618],
[0.6767, 0.7439, 0.5984, 0.5499],
[0.8465, 0.7276, 0.3078, 0.3882],
[0.1001, 0.0705, 0.2007, 0.4051]]],
[[[0.7520, 0.4528, 0.0525, 0.9253],
[0.6946, 0.0318, 0.5650, 0.7385],
[0.0671, 0.6493, 0.3243, 0.2383],
[0.6119, 0.7762, 0.9687, 0.0896]]],
[[[0.3504, 0.7431, 0.8336, 0.0336],
[0.8208, 0.9051, 0.1681, 0.8722],
[0.5751, 0.7903, 0.0046, 0.1471],
[0.4875, 0.1592, 0.2783, 0.6338]]],
[[[0.9398, 0.7589, 0.6645, 0.8017],
[0.9469, 0.2822, 0.9042, 0.2516],
[0.2576, 0.3852, 0.7349, 0.2806],
[0.7062, 0.1214, 0.0922, 0.1385]]]])
tensor([[0, 3],
[3, 2],
[1, 1],
[1, 0]])
我希望这是你想要的! :)
编辑:
这是一个稍微修改过的,可能会更快(我猜不是很多:),但它更简单更漂亮:
而不是像以前那样:
m = x.view(n, -1).argmax(1)
indices = torch.cat(((m // d).view(-1, 1), (m % d).view(-1, 1)), dim=1)
已经对argmax
值进行了必要的整形:
m = x.view(n, -1).argmax(1).view(-1, 1)
indices = torch.cat((m // d, m % d), dim=1)
但正如 cmets 中所述。我认为不可能从中得到更多。
你可以做的一件事,如果真的对你来说获得最后一点可能的性能改进很重要,那就是将上面的函数实现为低级扩展(如C++) 用于 pytorch。
这只会给你一个你可以调用它的函数,并且会避免缓慢的 python 代码。
https://pytorch.org/tutorials/advanced/cpp_extension.html
【讨论】:
是的,这就是我想要的输出。我修改它以将m
转换为.float()
,然后使用//
除以d
。你提出的是一个解开,类似于numpy.unravel_indices()
。如果你能想到一个更快的方法当然会更好。
@Chris 我刚刚做了一个短时间的测试。实际上我认为它非常有效,我想目前没有更快的方法:调用argmax()
本身需要大约 10 倍,只要计算下一行中的索引 - 在 CPU 上,我也可以稍后在 GPU 上检查。但是操作真的很简单而且很严格,所以即使这是一种解决方法,从理论的角度来看它也应该是相当有效的。
不,它一点也不慢,我在 Telsa Volta 上需要大约 5.5 毫秒。我只需要最大化它,但我同意,argmax 是一个线性运算,因为张量是无序的。可能这是最慢的组件,无法加速。
@Chris 最后我做了一个小编辑,版本稍微好一点。但我不希望在性能方面真正有所作为,可能大致相同 - 领先半纳秒。如果充分利用它真的很重要,您可能希望使用 C++ 中的自定义扩展。但考虑到代码的小sn-p,收益可能不会那么多。
谢谢,效果很好。我在评估中也犯了一个错误,似乎只是 0.5 毫秒而不是 5 毫秒。【参考方案3】:
这是torch
中的unravel_index
实现:
def unravel_index(
indices: torch.LongTensor,
shape: Tuple[int, ...],
) -> torch.LongTensor:
r"""Converts flat indices into unraveled coordinates in a target shape.
This is a `torch` implementation of `numpy.unravel_index`.
Args:
indices: A tensor of (flat) indices, (*, N).
shape: The targeted shape, (D,).
Returns:
The unraveled coordinates, (*, N, D).
"""
coord = []
for dim in reversed(shape):
coord.append(indices % dim)
indices = indices // dim
coord = torch.stack(coord[::-1], dim=-1)
return coord
然后,您可以使用torch.argmax
函数来获取“扁平化”张量的索引。
y = x.view(20, -1)
indices = torch.argmax(y)
indices.shape # (20,)
并使用 unravel_index
函数解开索引。
indices = unravel_index(indices, x.shape[-2:])
indices.shape # (20, 2)
【讨论】:
这是最接近真实、通用的答案!要更直接地回答原始问题,即询问如何获取最大值的索引,您可能需要编辑以显示如何首先使用 argmax 获取索引,然后解开它们。 我最终不得不对与 argmax 的连接进行编码,所以请检查我的答案。随意将我所做的纳入您的。【参考方案4】:接受的答案仅适用于给定的示例。
tejasvi88 的回答很有趣,但无助于回答最初的问题(正如我在那里的评论中所解释的那样)。
我相信弗朗索瓦的答案是最接近的,因为它处理的是更通用的情况(任意数量的维度)。但是,它没有与argmax
连接,并且显示的示例没有说明该函数处理批处理的能力。
因此,我将在此处以弗朗索瓦的回答为基础,并添加代码以连接到 argmax
。我编写了一个新函数batch_argmax
,它返回批处理中最大值的索引。批次可以按多个维度进行组织。我还包括一些测试用例来说明:
def batch_argmax(tensor, batch_dim=1):
"""
Assumes that dimensions of tensor up to batch_dim are "batch dimensions"
and returns the indices of the max element of each "batch row".
More precisely, returns tensor `a` such that, for each index v of tensor.shape[:batch_dim], a[v] is
the indices of the max element of tensor[v].
"""
if batch_dim >= len(tensor.shape):
raise NoArgMaxIndices()
batch_shape = tensor.shape[:batch_dim]
non_batch_shape = tensor.shape[batch_dim:]
flat_non_batch_size = prod(non_batch_shape)
tensor_with_flat_non_batch_portion = tensor.reshape(*batch_shape, flat_non_batch_size)
dimension_of_indices = len(non_batch_shape)
# We now have each batch row flattened in the last dimension of tensor_with_flat_non_batch_portion,
# so we can invoke its argmax(dim=-1) method. However, that method throws an exception if the tensor
# is empty. We cover that case first.
if tensor_with_flat_non_batch_portion.numel() == 0:
# If empty, either the batch dimensions or the non-batch dimensions are empty
batch_size = prod(batch_shape)
if batch_size == 0: # if batch dimensions are empty
# return empty tensor of appropriate shape
batch_of_unraveled_indices = torch.ones(*batch_shape, dimension_of_indices).long() # 'ones' is irrelevant as it will be empty
else: # non-batch dimensions are empty, so argmax indices are undefined
raise NoArgMaxIndices()
else: # We actually have elements to maximize, so we search for them
indices_of_non_batch_portion = tensor_with_flat_non_batch_portion.argmax(dim=-1)
batch_of_unraveled_indices = unravel_indices(indices_of_non_batch_portion, non_batch_shape)
if dimension_of_indices == 1:
# above function makes each unraveled index of a n-D tensor a n-long tensor
# however indices of 1D tensors are typically represented by scalars, so we squeeze them in this case.
batch_of_unraveled_indices = batch_of_unraveled_indices.squeeze(dim=-1)
return batch_of_unraveled_indices
class NoArgMaxIndices(BaseException):
def __init__(self):
super(NoArgMaxIndices, self).__init__(
"no argmax indices: batch_argmax requires non-batch shape to be non-empty")
这里是测试:
def test_basic():
# a simple array
tensor = torch.tensor([0, 1, 2, 3, 4])
batch_dim = 0
expected = torch.tensor(4)
run_test(tensor, batch_dim, expected)
# making batch_dim = 1 renders the non-batch portion empty and argmax indices undefined
tensor = torch.tensor([0, 1, 2, 3, 4])
batch_dim = 1
check_that_exception_is_thrown(lambda: batch_argmax(tensor, batch_dim), NoArgMaxIndices)
# now a batch of arrays
tensor = torch.tensor([[1, 2, 3], [6, 5, 4]])
batch_dim = 1
expected = torch.tensor([2, 0])
run_test(tensor, batch_dim, expected)
# Now we have an empty batch with non-batch 3-dim arrays' shape (the arrays are actually non-existent)
tensor = torch.ones(0, 3) # 'ones' is irrelevant since this is empty
batch_dim = 1
# empty batch of the right shape: just the batch dimension 0,since indices of arrays are scalar (0D)
expected = torch.ones(0)
run_test(tensor, batch_dim, expected)
# Now we have an empty batch with non-batch matrices' shape (the matrices are actually non-existent)
tensor = torch.ones(0, 3, 2) # 'ones' is irrelevant since this is empty
batch_dim = 1
# empty batch of the right shape: the batch and two dimension for the indices since we have 2D matrices
expected = torch.ones(0, 2)
run_test(tensor, batch_dim, expected)
# a batch of 2D matrices:
tensor = torch.tensor([[[1, 2, 3], [6, 5, 4]], [[2, 3, 1], [4, 5, 6]]])
batch_dim = 1
expected = torch.tensor([[1, 0], [1, 2]]) # coordinates of two 6's, one in each 2D matrix
run_test(tensor, batch_dim, expected)
# same as before, but testing that batch_dim supports negative values
tensor = torch.tensor([[[1, 2, 3], [6, 5, 4]], [[2, 3, 1], [4, 5, 6]]])
batch_dim = -2
expected = torch.tensor([[1, 0], [1, 2]])
run_test(tensor, batch_dim, expected)
# Same data, but a 2-dimensional batch of 1D arrays!
tensor = torch.tensor([[[1, 2, 3], [6, 5, 4]], [[2, 3, 1], [4, 5, 6]]])
batch_dim = 2
expected = torch.tensor([[2, 0], [1, 2]]) # coordinates of 3, 6, 3, and 6
run_test(tensor, batch_dim, expected)
# same as before, but testing that batch_dim supports negative values
tensor = torch.tensor([[[1, 2, 3], [6, 5, 4]], [[2, 3, 1], [4, 5, 6]]])
batch_dim = -1
expected = torch.tensor([[2, 0], [1, 2]])
run_test(tensor, batch_dim, expected)
def run_test(tensor, batch_dim, expected):
actual = batch_argmax(tensor, batch_dim)
print(f"batch_argmax of tensor with batch_dim batch_dim is\nactual\nExpected:\nexpected")
assert actual.shape == expected.shape
assert actual.eq(expected).all()
def check_that_exception_is_thrown(thunk, exception_type):
if isinstance(exception_type, BaseException):
raise Exception(f"check_that_exception_is_thrown received an exception instance rather than an exception type: "
f"exception_type")
try:
thunk()
raise AssertionError(f"Should have thrown exception_type")
except exception_type:
pass
except Exception as e:
raise AssertionError(f"Should have thrown exception_type but instead threw e")
【讨论】:
【参考方案5】:ps=ps.numpy()
ps=ps.tolist()
mx=[max(l) for l in ps]
mx=max(mx)
for i in range(len(ps[0])):
if mx==ps[0][i]:
print("The digit is "+str(i))
break
这对我很有效
【讨论】:
以上是关于如何有效地检索 Torch 张量中最大值的索引?的主要内容,如果未能解决你的问题,请参考以下文章