通过选择散点图上的点来更新虚线表

Posted

技术标签:

【中文标题】通过选择散点图上的点来更新虚线表【英文标题】:Update dash table by selecting points on scatter plot 【发布时间】:2020-10-12 10:35:30 【问题描述】:

我正在开发仪表板。这是我的代码:

# IMPORT SECTION
import dash
import dash_table
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output
import plotly.graph_objs as go
import numpy as np
import pandas as pd
from math import ceil
from matplotlib.cm import Set3


# INPUT DATA
n = 7
d_min = 0.2
d_max = 0.8
d_step = 0.1
N_min = 2000
N_max = 8000
N_step = 1000
D = 40
h = 20
dataframe_file = 'data.xlsx'


# COLOR AND FONT DEFINITION
grey = '#e0e1f5'
black = '#212121'
scatter_colors = ['#' + ''.join([':02x'.format(int(255*Set3(i)[j])) for j in range(3)]) for i in range(n)]
fontsize = 18
fontfamily = 'Arial, sans-serif'


# READ CSV DATA
df = pd.read_excel(dataframe_file)


# CREATE DATA FOR DASH DATATABLE
df_scatter_colors = ceil(len(df) / len(scatter_colors)) * scatter_colors
df_scatter_colors = df_scatter_colors[:len(df)]
df.insert(loc = 0, column = 'COLOR', value = df_scatter_colors)

headers = ["name": i, "id": i for i in df.columns]

table = df.to_dict('records')

table_colors = ['if': 'row_index': i, 'column_id': 'COLOR',
                 'background-color': df.iloc[i]['COLOR'],
                 'color': df.iloc[i]['COLOR'] for i in range(df.shape[0])]


# CREATE DATA AND LAYOUT FOR THE SCATTERPLOT
x_jitter = 0.05 * N_step * np.random.randn(len(df))
y_jitter = 0.05 * d_step * 1000 * np.random.randn(len(df))
data = [go.Scatter(x = df['NUMBER'] + x_jitter,
                   y = df['DIAMETER'] + y_jitter,
                   text = df['PRODUCT'],
                   mode = 'markers',
                   hoverinfo = 'skip',
                   showlegend = False,
                   marker_color = 'rgba(0, 0, 0, 0)',
                   marker = 'size': 25,
                             'line': 'color': df['COLOR'],
                                      'width': 8)]

layout = go.Layout(plot_bgcolor = black,
                   hovermode = 'x unified',
                   uirevision = 'value')

figure = go.Figure(data = data, layout = layout)


# DASHBOARD LAYOUT
app = dash.Dash(external_stylesheets = [dbc.themes.BOOTSTRAP])

app.layout = html.Div(id = 'general_div',
                      children = [html.Div(id = 'first_row',
                                           children = [dcc.Graph(id = 'main_graph',
                                                                 figure = figure,
                                                                 style = 'height': 800,
                                                                          'width': 1400)],

                                           className = 'row'),

                                  html.Div(id = 'second_row',
                                           children = [dash_table.DataTable(id = 'main_table',
                                                                            columns = headers,
                                                                            data = table,
                                                                            style_data_conditional = table_colors,
                                                                            style_table = 'margin-left': '3vw',
                                                                                           'margin-top': '3vw',
                                                                            style_cell = 'font-family': fontfamily,
                                                                                          'fontSize': fontsize,
                                                                            style_header = 'backgroundColor': 'rgb(230, 230, 230)',
                                                                                            'fontWeight': 'bold')],

                                           className = 'row')])


# CALLBACK DEFINITION
@app.callback(Output('main_table', 'style_data_conditional'),
              [Input('main_graph', 'selectedData'),
               Input('main_table', 'style_data_conditional')])
def display_selected_data(selectedData, style_data_conditional):
    # what to do here and how to run this callback?
    return style_data_conditional


if __name__ == "__main__":
    app.run_server()

仪表板中有一个散点图 (dcc.Graph) 和一个表格 (dash_table.DataTable)。散点图的每个点对应于表格的特定行,我从 Excel 文件中读取这些数据。 excel文件中的数据格式如下:

PRODUCT CODE    NUMBER  DIAMETER
AAAAA   1412    8000    0.049
BBBBB   1418    3900    0.08
CCCCC   1420    7600    0.06
DDDDD   1426    8500    0.049
EEEEE   1430    3900    0.08
FFFFF   1442    3900    0.08
GGGGG   1490    8500    0.049
HHHHH   1504    9000    0.18
IIIII   1514    5500    0.224
JJJJJ   1584    7600    0.06
KKKKK   1606    8500    0.049
LLLLL   1618    7600    0.06
MMMMM   1638    7600    0.06
NNNNN   1640    7600    0.06
OOOOO   1666    3900    0.08
PPPPP   1670    8000    0.049
QQQQQ   1672    8000    0.049
RRRRR   1674    7600    0.06
SSSSS   1700    7100    0.071
TTTTT   1704    8500    0.049
UUUUU   1712    7600    0.06
VVVVV   1718    7600    0.06
WWWWW   1722    8000    0.065

我想实现这个功能:当用户选择散点图中的某个点时,代码会突出显示表格中的相应行(例如将这些行中的单元格的背景颜色更改为'pink',除了'COLOR' 列,保持其颜色)。

检查了这些来源:

    dash-datatable-individual-highlight-using-style-data-conditionals-works-unusual dash-datatable-style-data-conditional-row-vice interactive-graphing

我试图像这样绘制一个回调,但没有成功:

@app.callback(Output('selected_data', 'children'),
              [Input('main_graph', 'selectedData'),
               Input('main_table', 'style_data_conditional')])
def display_selected_data(selectedData, style_data_conditional):
    selected_points = []
    for point in selectedData['points']:
        selected_points.append(point['marker.line.color'])
    selected = ['if': 'filter': 'COLOR eq ' + f'"color"',
                        'column_id': 'PRODUCT',
                 'backgroundColor': 'pink' for color in selected_points]
    style_data_conditional.extend(selected)

    return style_data_conditional

提前致谢。

版本信息

Python                       3.7.0
dash                         1.12.0
dash-bootstrap-components    0.10.1
dash-core-components         1.10.0
dash-html-components         1.0.3
matplotlib                   3.0.2
numpy                        1.15.4
plotly                       4.7.0

【问题讨论】:

【参考方案1】:

我设法通过将selectedData 作为main_graph 的输入并通过函数update_table_style 处理main_tablestyle_data_conditional 作为输出来解决了这个问题。 在这里,我用深灰色为奇数行着色,以提高表格的可见性,然后通过样式条件设置所选行的背景颜色。最后,我根据每行的颜色(每行的第一列报告的颜色)更改第一列的背景。

代码:

# IMPORT SECTION
import dash
import dash_table
import dash_core_components as dcc
import dash_html_components as html
import dash_bootstrap_components as dbc
from dash.dependencies import Input, Output
import plotly.graph_objs as go
import numpy as np
import pandas as pd
from math import ceil
from matplotlib.cm import Set3


# INPUT DATA
n = 7
d_min = 0.2
d_max = 0.8
d_step = 0.1
N_min = 2000
N_max = 8000
N_step = 1000
D = 40
h = 20
dataframe_file = 'data.xlsx'


# COLOR AND FONT DEFINITION
grey = '#e0e1f5'
black = '#212121'
scatter_colors = ['#' + ''.join([':02x'.format(int(255*Set3(i)[j])) for j in range(3)]) for i in range(n)]
fontsize = 18
fontfamily = 'Arial, sans-serif'


# READ CSV DATA
df = pd.read_excel(dataframe_file)


# CREATE DATA FOR DASH DATATABLE
df_scatter_colors = ceil(len(df) / len(scatter_colors)) * scatter_colors
df_scatter_colors = df_scatter_colors[:len(df)]
df.insert(loc = 0, column = 'COLOR', value = df_scatter_colors)

headers = ["name": i, "id": i for i in df.columns]

table = df.to_dict('records')


# CREATE DATA AND LAYOUT FOR THE SCATTERPLOT
x_jitter = 0.05 * N_step * np.random.randn(len(df))
y_jitter = 0.05 * d_step * 1000 * np.random.randn(len(df))
data = [go.Scatter(x = df['NUMBER'] + x_jitter,
                   y = df['DIAMETER'] + y_jitter,
                   text = df['PRODUCT'],
                   mode = 'markers',
                   hoverinfo = 'skip',
                   showlegend = False,
                   marker_color = 'rgba(0, 0, 0, 0)',
                   marker = 'size': 25,
                             'line': 'color': df['COLOR'],
                                      'width': 8)]

layout = go.Layout(plot_bgcolor = black,
                   hovermode = 'x unified',
                   uirevision = 'value')

figure = go.Figure(data = data, layout = layout)

def update_table_style(selectedData):
    table_style_conditions = ['if': 'row_index': 'odd',
                               'backgroundColor': 'rgb(240, 240, 240)']

    if selectedData != None:
        points_selected = []
        for point in selectedData['points']:
            points_selected.append(point['pointIndex'])
        selected_styles = ['if': 'row_index': i,
                            'backgroundColor': 'pink' for i in points_selected]
        table_style_conditions.extend(selected_styles)

    table_style_conditions.extend(['if': 'row_index': i, 'column_id': 'COLOR',
                                    'background-color': df.iloc[i]['COLOR'],
                                    'color': df.iloc[i]['COLOR'] for i in range(df.shape[0])])

    return table_style_conditions


# DASHBOARD LAYOUT
app = dash.Dash(external_stylesheets = [dbc.themes.BOOTSTRAP])

app.layout = html.Div(id = 'general_div',
                      children = [html.Div(id = 'first_row',
                                           children = [dcc.Graph(id = 'main_graph',
                                                                 figure = figure,
                                                                 style = 'height': 800,
                                                                          'width': 1400)],

                                           className = 'row'),

                                  html.Div(id = 'second_row',
                                           children = [dash_table.DataTable(id = 'main_table',
                                                                            columns = headers,
                                                                            data = table,
                                                                            # style_data_conditional = table_colors,
                                                                            style_table = 'margin-left': '3vw',
                                                                                           'margin-top': '3vw',
                                                                            style_cell = 'font-family': fontfamily,
                                                                                          'fontSize': fontsize,
                                                                            style_header = 'backgroundColor': 'rgb(230, 230, 230)',
                                                                                            'fontWeight': 'bold')],

                                           className = 'row')])


# CALLBACK DEFINITION
@app.callback(Output('main_table', 'style_data_conditional'),
              [Input('main_graph', 'selectedData')])
def display_selected_data(selectedData):
    table_style_conditions = update_table_style(selectedData)
    return table_style_conditions


if __name__ == "__main__":
    app.run_server()

着色部分是这样的:

table_style_conditions = ['if': 'row_index': 'odd',
                           'backgroundColor': 'rgb(240, 240, 240)']

if selectedData != None:
    points_selected = []
    for point in selectedData['points']:
        points_selected.append(point['pointIndex'])
    selected_styles = ['if': 'row_index': i,
                        'backgroundColor': 'pink' for i in points_selected]
    table_style_conditions.extend(selected_styles)

table_style_conditions.extend(['if': 'row_index': i, 'column_id': 'COLOR',
                                'background-color': df.iloc[i]['COLOR'],
                                'color': df.iloc[i]['COLOR'] for i in range(df.shape[0])])

这是我得到的结果:

【讨论】:

以上是关于通过选择散点图上的点来更新虚线表的主要内容,如果未能解决你的问题,请参考以下文章

数字孪生|可视化图表之散点图

散点图上的颜色线 - R [重复]

Plotly:散点图上的不同符号

MatPlotLib:同一个散点图上的多个数据集

Plotly 散点图趋势线出现在散点下方。如何让趋势线出现在散点图上? [Python]

我要做一个散点图,用来拟合直线