在当前进程完成其引导阶段之前尝试启动一个新进程
Posted
技术标签:
【中文标题】在当前进程完成其引导阶段之前尝试启动一个新进程【英文标题】:An attempt has been made to start a new process before the current process has finished its bootstrapping phase 【发布时间】:2019-07-30 04:13:09 【问题描述】:我是 dask 的新手,我发现拥有一个可以轻松实现并行化的模块真是太好了。我正在做一个项目,我能够在一台机器上并行化一个循环为 you can see here 。但是,我想转到dask.distributed
。我对上面的类应用了以下更改:
diff --git a/mlchem/fingerprints/gaussian.py b/mlchem/fingerprints/gaussian.py
index ce6a72b..89f8638 100644
--- a/mlchem/fingerprints/gaussian.py
+++ b/mlchem/fingerprints/gaussian.py
@@ -6,7 +6,7 @@ from sklearn.externals import joblib
from .cutoff import Cosine
from collections import OrderedDict
import dask
-import dask.multiprocessing
+from dask.distributed import Client
import time
@@ -141,13 +141,14 @@ class Gaussian(object):
for image in images.items():
computations.append(self.fingerprints_per_image(image))
+ client = Client()
if self.scaler is None:
- feature_space = dask.compute(*computations, scheduler='processes',
+ feature_space = dask.compute(*computations, scheduler='distributed',
num_workers=self.cores)
feature_space = OrderedDict(feature_space)
else:
stacked_features = dask.compute(*computations,
- scheduler='processes',
+ scheduler='distributed',
num_workers=self.cores)
stacked_features = numpy.array(stacked_features)
这样做会产生此错误:
File "/usr/local/Cellar/python/3.7.2_2/Frameworks/Python.framework/Versions/3.7/lib/python3.7/multiprocessing/spawn.py", line 136, in _check_not_importing_main
is not going to be frozen to produce an executable.''')
RuntimeError:
An attempt has been made to start a new process before the
current process has finished its bootstrapping phase.
This probably means that you are not using fork to start your
child processes and you have forgotten to use the proper idiom
in the main module:
if __name__ == '__main__':
freeze_support()
...
我尝试了不同的方法来添加if __name__ == '__main__':
,但没有成功。这可以是reproduced by running this example。如果有人能帮助我解决这个问题,我将不胜感激。我不知道应该如何更改代码以使其正常工作。
谢谢。
编辑:示例为cu_training.py
。
【问题讨论】:
【参考方案1】:Client
命令启动新进程,因此它必须位于 if __name__ == '__main__':
块内,如此 SO question 或此 GitHub issue 中所述
这与多处理模块相同
【讨论】:
谢谢,@MRocklin。我已阅读您在答案中发送的链接。但是,我还没有找到一种方法来更改我的代码以使其工作。 我终于理解你了,@MRocklin。我在这里修复了它github.com/muammar/mlchem/commit/… 我将尝试重构我的代码,因为我不太喜欢我必须执行一个函数来运行计算,但也许这只是使用分布式的预期方式。尚未确定。顺便说一句,很棒的工具。【参考方案2】:即使在包含 main if __name__ == '__main__':
之后,我的代码也遇到了几个问题。
我正在使用几个 python 文件和模块,并且 multiprocess 仅由一个函数用于某些采样操作。 唯一对我有用的解决方法是将 main 包含在整个代码的第一个文件和第一行(甚至包括导入)。以下效果很好:
if __name__ == '__main__':
from mjrl.utils.gym_env import GymEnv
from mjrl.policies.gaussian_mlp import MLP
from mjrl.baselines.quadratic_baseline import QuadraticBaseline
from mjrl.baselines.mlp_baseline import MLPBaseline
from mjrl.algos.npg_cg import NPG
from mjrl.algos.dapg import DAPG
from mjrl.algos.behavior_cloning import BC
from mjrl.utils.train_agent import train_agent
from mjrl.samplers.core import sample_paths
import os
import json
import mjrl.envs
import mj_envs
import time as timer
import pickle
import argparse
import numpy as np
# ===============================================================================
# Get command line arguments
# ===============================================================================
parser = argparse.ArgumentParser(description='Policy gradient algorithms with demonstration data.')
parser.add_argument('--output', type=str, required=True, help='location to store results')
parser.add_argument('--config', type=str, required=True, help='path to config file with exp params')
args = parser.parse_args()
JOB_DIR = args.output
if not os.path.exists(JOB_DIR):
os.mkdir(JOB_DIR)
with open(args.config, 'r') as f:
job_data = eval(f.read())
assert 'algorithm' in job_data.keys()
assert any([job_data['algorithm'] == a for a in ['NPG', 'BCRL', 'DAPG']])
job_data['lam_0'] = 0.0 if 'lam_0' not in job_data.keys() else job_data['lam_0']
job_data['lam_1'] = 0.0 if 'lam_1' not in job_data.keys() else job_data['lam_1']
EXP_FILE = JOB_DIR + '/job_config.json'
with open(EXP_FILE, 'w') as f:
json.dump(job_data, f, indent=4)
# ===============================================================================
# Train Loop
# ===============================================================================
e = GymEnv(job_data['env'])
policy = MLP(e.spec, hidden_sizes=job_data['policy_size'], seed=job_data['seed'])
baseline = MLPBaseline(e.spec, reg_coef=1e-3, batch_size=job_data['vf_batch_size'],
epochs=job_data['vf_epochs'], learn_rate=job_data['vf_learn_rate'])
【讨论】:
以上是关于在当前进程完成其引导阶段之前尝试启动一个新进程的主要内容,如果未能解决你的问题,请参考以下文章