如何在 Python 中获取 BPM 和节奏音频功能 [关闭]
Posted
技术标签:
【中文标题】如何在 Python 中获取 BPM 和节奏音频功能 [关闭]【英文标题】:How to get BPM and tempo audio features in Python [closed] 【发布时间】:2011-12-26 10:54:30 【问题描述】:我参与了一个项目,该项目需要我提取每分钟节拍 (BPM)、节奏等歌曲特征。但是,我还没有找到可以准确检测这些特征的合适 Python 库。
有人有什么建议吗?
(在Matlab中,我确实知道一个叫Mirtoolbox的项目,它可以在处理本地mp3文件后给出BPM和节奏信息。)
【问题讨论】:
编码格式是什么?我从来没有听说过python声音库......再说一次,我远非无所不能和无所不知。启动你的谷歌机器并输入“python声音库” 【参考方案1】:这个答案是在一年后出现的,但无论如何,记录在案。我发现了三个带有 python 绑定的音频库,可以从音频中提取特征。它们不是那么容易安装,因为它们实际上是用 C 语言编写的,您需要正确编译 python 绑定并将它们添加到要导入的路径中,但在这里它们是:
Yaafe Aubio LibXtract Essentia【讨论】:
现在我推荐使用 Essentia (essentia.upf.edu),这是我前段时间贡献的一个很棒的库。【参考方案2】:Echo Nest API 正是您要找的:
http://echonest.github.io/remix/
Python 绑定很丰富,但安装 Echo Nest 可能会很痛苦,因为团队似乎无法构建可靠的安装程序。
但是它不做本地处理。相反,它会计算音频指纹并将歌曲上传到 Echo Nest 服务器,以便使用它们不公开的算法进行信息提取。
【讨论】:
是否有本地处理项目,可以仅根据本地 mp3/wav 文件提取 bpm 特征。 大约一年前我对此事进行了一些研究,Echo Nest 是 Python 最简单的解决方案。我不确定现在是否有其他可用的库 - 如果你找到它们,请把它们作为答案 我确实和你有同样的发现。没有可以提取音乐特征的可用库。 或者,有没有其他类似 echonest 的库。即使它只包含一些特征提取功能。 EchoNest 不会再发布 API 密钥了...developer.echonest.com/account/register【参考方案3】:我通过@scaperot here 找到了可以帮助您的代码:
import wave, array, math, time, argparse, sys
import numpy, pywt
from scipy import signal
import pdb
import matplotlib.pyplot as plt
def read_wav(filename):
#open file, get metadata for audio
try:
wf = wave.open(filename,'rb')
except IOError, e:
print e
return
# typ = choose_type( wf.getsampwidth() ) #TODO: implement choose_type
nsamps = wf.getnframes();
assert(nsamps > 0);
fs = wf.getframerate()
assert(fs > 0)
# read entire file and make into an array
samps = list(array.array('i',wf.readframes(nsamps)))
#print 'Read', nsamps,'samples from', filename
try:
assert(nsamps == len(samps))
except AssertionError, e:
print nsamps, "not equal to", len(samps)
return samps, fs
# print an error when no data can be found
def no_audio_data():
print "No audio data for sample, skipping..."
return None, None
# simple peak detection
def peak_detect(data):
max_val = numpy.amax(abs(data))
peak_ndx = numpy.where(data==max_val)
if len(peak_ndx[0]) == 0: #if nothing found then the max must be negative
peak_ndx = numpy.where(data==-max_val)
return peak_ndx
def bpm_detector(data,fs):
cA = []
cD = []
correl = []
cD_sum = []
levels = 4
max_decimation = 2**(levels-1);
min_ndx = 60./ 220 * (fs/max_decimation)
max_ndx = 60./ 40 * (fs/max_decimation)
for loop in range(0,levels):
cD = []
# 1) DWT
if loop == 0:
[cA,cD] = pywt.dwt(data,'db4');
cD_minlen = len(cD)/max_decimation+1;
cD_sum = numpy.zeros(cD_minlen);
else:
[cA,cD] = pywt.dwt(cA,'db4');
# 2) Filter
cD = signal.lfilter([0.01],[1 -0.99],cD);
# 4) Subtractargs.filename out the mean.
# 5) Decimate for reconstruction later.
cD = abs(cD[::(2**(levels-loop-1))]);
cD = cD - numpy.mean(cD);
# 6) Recombine the signal before ACF
# essentially, each level I concatenate
# the detail coefs (i.e. the HPF values)
# to the beginning of the array
cD_sum = cD[0:cD_minlen] + cD_sum;
if [b for b in cA if b != 0.0] == []:
return no_audio_data()
# adding in the approximate data as well...
cA = signal.lfilter([0.01],[1 -0.99],cA);
cA = abs(cA);
cA = cA - numpy.mean(cA);
cD_sum = cA[0:cD_minlen] + cD_sum;
# ACF
correl = numpy.correlate(cD_sum,cD_sum,'full')
midpoint = len(correl) / 2
correl_midpoint_tmp = correl[midpoint:]
peak_ndx = peak_detect(correl_midpoint_tmp[min_ndx:max_ndx]);
if len(peak_ndx) > 1:
return no_audio_data()
peak_ndx_adjusted = peak_ndx[0]+min_ndx;
bpm = 60./ peak_ndx_adjusted * (fs/max_decimation)
print bpm
return bpm,correl
if __name__ == '__main__':
parser = argparse.ArgumentParser(description='Process .wav file to determine the Beats Per Minute.')
parser.add_argument('--filename', required=True,
help='.wav file for processing')
parser.add_argument('--window', type=float, default=3,
help='size of the the window (seconds) that will be scanned to determine the bpm. Typically less than 10 seconds. [3]')
args = parser.parse_args()
samps,fs = read_wav(args.filename)
data = []
correl=[]
bpm = 0
n=0;
nsamps = len(samps)
window_samps = int(args.window*fs)
samps_ndx = 0; #first sample in window_ndx
max_window_ndx = nsamps / window_samps;
bpms = numpy.zeros(max_window_ndx)
#iterate through all windows
for window_ndx in xrange(0,max_window_ndx):
#get a new set of samples
#print n,":",len(bpms),":",max_window_ndx,":",fs,":",nsamps,":",samps_ndx
data = samps[samps_ndx:samps_ndx+window_samps]
if not ((len(data) % window_samps) == 0):
raise AssertionError( str(len(data) ) )
bpm, correl_temp = bpm_detector(data,fs)
if bpm == None:
continue
bpms[window_ndx] = bpm
correl = correl_temp
#iterate at the end of the loop
samps_ndx = samps_ndx+window_samps;
n=n+1; #counter for debug...
bpm = numpy.median(bpms)
print 'Completed. Estimated Beats Per Minute:', bpm
n = range(0,len(correl))
plt.plot(n,abs(correl));
plt.show(False); #plot non-blocking
time.sleep(10);
plt.close();
【讨论】:
这很酷,但我很好奇它的工作原理,因为简单的 bpm 检测器确实很简单。你有没有尝试过像this 这样的替代方法?【参考方案4】:librosa
是您要查找的包。它包含广泛的音频分析功能。 librosa.beat.beat_track()
和 librosa.beat.tempo()
函数将为您提取所需的特征。
也可以使用librosa
中提供的函数获得色度、MFCC、过零率等光谱特征和节奏图等节奏特征。
【讨论】:
【参考方案5】:Librosa 具有 librosa.beat.beat_track() 方法,但您需要提供 BMP 的估计值作为“start_bpm”参数。不确定它有多准确,但也许值得一试。
【讨论】:
【参考方案6】:我最近遇到了Vampy,这是一个包装插件,使您可以在任何 Vamp 主机中使用用 Python 编写的 Vamp 插件。 Vamp 是一个音频处理插件系统,用于从音频数据中提取描述性信息的插件。希望对您有所帮助。
【讨论】:
Vamp 网站不清楚如何安装 Vampy,他们建议使用 SonicAnnotator 等工具,但该网站似乎已关闭...omras2.org/SonicAnnotator 如果 Vampy一个 python 包,可以通过 pip/conda 轻松安装或通过 git 克隆,使用它作为命令行工具的简单方法。以上是关于如何在 Python 中获取 BPM 和节奏音频功能 [关闭]的主要内容,如果未能解决你的问题,请参考以下文章