在 ggplotly 散点图中添加自定义数据标签
Posted
技术标签:
【中文标题】在 ggplotly 散点图中添加自定义数据标签【英文标题】:Add custom data label in ggplotly scatterplot 【发布时间】:2018-09-02 10:12:13 【问题描述】:我想在光标位于每个数据点而不是 x 和 y 值时显示每个数据点的 Species
。我使用iris
数据集。此外,我希望能够单击数据点以使标签持久化,并且当我在图中选择一个新点时不会消失。 (如果可能的话 )。基本是标签。持久性问题是一个优点。这是我的应用程序:
## Note: extrafont is a bit finnicky on Windows,
## so be sure to execute the code in the order
## provided, or else ggplot won't find the font
# Use this to acquire additional fonts not found in R
install.packages("extrafont");library(extrafont)
# Warning: if not specified in font_import, it will
# take a bit of time to get all fonts
font_import(pattern = "calibri")
loadfonts(device = "win")
#ui.r
library(shiny)
library(ggplot2)
library(plotly)
library(extrafont)
library(ggrepel)
fluidPage(
# App title ----
titlePanel(div("CROSS CORRELATION",style = "color:blue")),
# Sidebar layout with input and output definitions ----
sidebarLayout(
# Sidebar panel for inputs ----
sidebarPanel(
# Input: Select a file ----
fileInput("file1", "Input CSV-File",
multiple = TRUE,
accept = c("text/csv",
"text/comma-separated-values,text/plain",
".csv")),
# Horizontal line ----
tags$hr(),
# Input: Checkbox if file has header ----
checkboxInput("header", "Header", TRUE),
# Input: Select separator ----
radioButtons("sep", "Separator",
choices = c(Comma = ",",
Semicolon = ";",
Tab = "\t"),
selected = ","),
# Horizontal line ----
tags$hr(),
# Input: Select number of rows to display ----
radioButtons("disp", "Display",
choices = c(Head = "head",
All = "all"),
selected = "head")
),
# Main panel for displaying outputs ----
mainPanel(
tabsetPanel(type = "tabs",
tabPanel("Table",
shiny::dataTableOutput("contents")),
tabPanel("Correlation Plot",
tags$style(type="text/css", "
#loadmessage
position: fixed;
top: 0px;
left: 0px;
width: 100%;
padding: 5px 0px 5px 0px;
text-align: center;
font-weight: bold;
font-size: 100%;
color: #000000;
background-color: #CCFF66;
z-index: 105;
"),conditionalPanel(condition="$('html').hasClass('shiny-busy')",
tags$div("Loading...",id="loadmessage")
),
fluidRow(
column(3, uiOutput("lx1")),
column(3,uiOutput("lx2"))),
hr(),
fluidRow(
tags$style(type="text/css",
".shiny-output-error visibility: hidden; ",
".shiny-output-error:before visibility: hidden; "
),
column(3,uiOutput("td")),
column(3,uiOutput("an"))),
fluidRow(
plotlyOutput("sc"))
))
)))
#server.r
function(input, output)
output$contents <- shiny::renderDataTable(
iris
)
output$lx1<-renderUI(
selectInput("lx1", label = h4("Select 1st Expression Profile"),
choices = colnames(iris[,1:4]),
selected = "Lex1")
)
output$lx2<-renderUI(
selectInput("lx2", label = h4("Select 2nd Expression Profile"),
choices = colnames(iris[,1:4]),
selected = "Lex2")
)
output$td<-renderUI(
radioButtons("td", label = h4("Trendline"),
choices = list("Add Trendline" = "lm", "Remove Trendline" = ""),
selected = "")
)
output$an<-renderUI(
radioButtons("an", label = h4("Correlation Coefficient"),
choices = list("Add Cor.Coef" = cor(subset(iris, select=c(input$lx1)),subset(iris, select=c(input$lx2))), "Remove Cor.Coef" = ""),
selected = "")
)
output$sc<-renderPlotly(
p1 <- ggplot(iris, aes_string(x = input$lx1, y = input$lx2))+
# Change the point options in geom_point
geom_point(color = "darkblue") +
# Change the title of the plot (can change axis titles
# in this option as well and add subtitle)
labs(title = "Cross Correlation") +
# Change where the tick marks are
scale_x_continuous(breaks = seq(0, 2.5, 30)) +
scale_y_continuous(breaks = seq(0, 2.5, 30)) +
# Change how the text looks for each element
theme(title = element_text(family = "Calibri",
size = 10,
face = "bold"),
axis.title = element_text(family = "Calibri Light",
size = 16,
face = "bold",
color = "darkgrey"),
axis.text = element_text(family = "Calibri",
size = 11))+
theme_bw()+
geom_smooth(method = input$td)+
annotate("text", x = 10, y = 10, label = as.character(input$an))
ggplotly(p1) %>%
layout(hoverlabel = list(bgcolor = "white",
font = list(family = "Calibri",
size = 9,
color = "black")))
)
【问题讨论】:
【参考方案1】:1.工具提示
您可以通过多种方式更改工具提示,如 here 所述。要在工具提示中只显示Species
,应该可以这样:
library(ggplot2)
library(plotly)
p1 <- ggplot(iris, aes_string(x = "Sepal.Length",
y = "Sepal.Width",
key = "Species")) +
geom_point()
ggplotly(p1, source = "select", tooltip = c("key"))
2。永久标签
我不确定如何在单击时将plotly
工具提示留在该点上,但您可以使用plotly
click event 来获取单击点,然后将geom_text
图层添加到您的ggplot
。
3.最小示例
我已经修改了您的代码以制作一个更简单的示例。通常,如果您创建一个 minimal example 并删除应用程序中不需要重新创建您的问题的部分(例如更改字体),这会很有帮助。
library(shiny)
library(plotly)
library(ggplot2)
ui <- fluidPage(
plotlyOutput("iris")
)
server <- function(input, output, session)
output$iris <- renderPlotly(
# set up plot
p1 <- ggplot(iris, aes_string(x = "Sepal.Length",
y = "Sepal.Width",
key = "Species")) +
geom_point()
# get clicked point
click_data <- event_data("plotly_click", source = "select")
# if a point has been clicked, add a label to the plot
if(!is.null(click_data))
label_data <- data.frame(x = click_data[["x"]],
y = click_data[["y"]],
label = click_data[["key"]],
stringsAsFactors = FALSE)
p1 <- p1 +
geom_text(data = label_data,
aes(x = x, y = y, label = label),
inherit.aes = FALSE, nudge_x = 0.25)
# return the plot
ggplotly(p1, source = "select", tooltip = c("key"))
)
shinyApp(ui, server)
编辑:保留所有标签
您可以使用reactiveValues
将每次点击存储在响应式data.frame 中,并将此data.frame 用于您的geom_text
层。
library(shiny)
library(plotly)
library(ggplot2)
ui <- fluidPage(
plotlyOutput("iris")
)
server <- function(input, output, session)
# 1. create reactive values
vals <- reactiveValues()
# 2. create df to store clicks
vals$click_all <- data.frame(x = numeric(),
y = numeric(),
label = character())
# 3. add points upon plot click
observe(
# get clicked point
click_data <- event_data("plotly_click", source = "select")
# get data for current point
label_data <- data.frame(x = click_data[["x"]],
y = click_data[["y"]],
label = click_data[["key"]],
stringsAsFactors = FALSE)
# add current point to df of all clicks
vals$click_all <- merge(vals$click_all,
label_data,
all = TRUE)
)
output$iris <- renderPlotly(
# set up plot
p1 <- ggplot(iris, aes_string(x = "Sepal.Length",
y = "Sepal.Width",
key = "Species")) +
geom_point() +
# 4. add labels for clicked points
geom_text(data = vals$click_all,
aes(x = x, y = y, label = label),
inherit.aes = FALSE, nudge_x = 0.25)
# return the plot
ggplotly(p1, source = "select", tooltip = c("key"))
)
shinyApp(ui, server)
【讨论】:
这是一个非常有帮助的特殊答案。是否可以在单击后保持显示的值并且在选择另一个位置时不会消失?我将编辑我的初始帖子以使其清楚,因为我知道我描述它的方式可能会造成混淆。 @firmo23 乐于助人!我已经用一个选项更新了我的答案。让我知道它是否适合你 您的代码似乎适用于该数据集,但在尝试将其应用于我的实际数据集时出现一个奇怪的错误。特别是我无法生成 geom_smooth。直到最近我还可以。我在谈论我的实际数据集,因为我可以用 iris 制作。我想知道是否可以私下与您联系。再次感谢 我创建了一个可能对***.com/questions/49502917/…987654326@有帮助的新问题 另一个问题是,当最初创建情节时,我将点与一条线连接起来,当我更新它时,这条线消失了。以上是关于在 ggplotly 散点图中添加自定义数据标签的主要内容,如果未能解决你的问题,请参考以下文章
R语言ggplot2可视化:ggplot2可视化散点图并使用geom_mark_circle函数在数据簇或数据分组的数据点周围添加圆圈进行注释(自定义圆圈的大小)
R语言ggplot2可视化:ggplot2可视化分组散点图并使用geom_smooth函数在散点图图中为不同的散点簇添加对应的回归曲线
R语言ggplot2可视化绘制散点图(scatter plot)使用gghighlight包突出高亮散点图中的特定数据点并添加文本标签(highlight and text annotation)
R语言ggplot2可视化:ggplot2可视化分组散点图并使用geom_smooth函数在散点图图中为不同的散点簇添加对应的回归曲线并使用se参数设置拟合回归线的置信区间
R语言ggplot2可视化数据点重合的散点图数据点有重合使用geom_smooth函数基于lm方法拟合数据点之间的趋势关系曲线自定义数据点的大小色彩添加主标题副标题题注信息