Pandas Concat 新专栏
Posted
技术标签:
【中文标题】Pandas Concat 新专栏【英文标题】:Pandas Concat new column 【发布时间】:2017-09-29 13:10:11 【问题描述】:为什么我在“ACTION”列中得到 NaN? 我得到这个结果对我来说似乎很奇怪。我试过使用 ignore_index = True 并且它有一个频率错误。
C H L O OI V WAP ACTION
datetime
2017-03-14 00:52:00 8.25 8.25 8.19 8.21 302.0 1769.0 8.22 NaN
2017-03-13 23:54:00 8.09 8.10 8.09 8.10 6.0 65.0 8.10 NaN
2017-03-14 01:03:00 8.29 8.32 8.28 8.29 175.0 1084.0 8.30 NaN
2017-03-14 00:03:00 8.15 8.15 8.14 8.15 13.0 50.0 8.15 NaN
2017-03-13 23:57:00 8.13 8.13 8.12 8.12 3.0 6.0 8.12 NaN
我想得到-
C H L O OI V WAP ACTION
datetime
2017-03-14 00:52:00 8.25 8.25 8.19 8.21 302.0 1769.0 8.22 100
2017-03-13 23:54:00 8.09 8.10 8.09 8.10 6.0 65.0 8.10 200
2017-03-14 01:03:00 8.29 8.32 8.28 8.29 175.0 1084.0 8.30 300
2017-03-14 00:03:00 8.15 8.15 8.14 8.15 13.0 50.0 8.15 400
2017-03-13 23:57:00 8.13 8.13 8.12 8.12 3.0 6.0 8.12 500
buy_stp = pd.Series([100,200,300,400,500],name= 'ACTION')
print(buy_stp)
df10 = pd.concat([df_concat_results,
buy_stp],
axis=1,
join_axes=[df_concat_results.index])
print(df10)
【问题讨论】:
【参考方案1】:您需要相同的索引 - Series
和 DataFrame
用于对齐,否则获取 NaN
s:
buy_stp.index = df.index
df['ACTION'] = buy_stp
print (df)
C H L O OI V WAP ACTION
datetime
2017-03-14 00:52:00 8.25 8.25 8.19 8.21 302.0 1769.0 8.22 100
2017-03-13 23:54:00 8.09 8.10 8.09 8.10 6.0 65.0 8.10 200
2017-03-14 01:03:00 8.29 8.32 8.28 8.29 175.0 1084.0 8.30 300
2017-03-14 00:03:00 8.15 8.15 8.14 8.15 13.0 50.0 8.15 400
2017-03-13 23:57:00 8.13 8.13 8.12 8.12 3.0 6.0 8.12 500
或者:
buy_stp = pd.Series([100,200,300,400,500],name= 'ACTION', index=df.index)
print(buy_stp)
datetime
2017-03-14 00:52:00 100
2017-03-13 23:54:00 200
2017-03-14 01:03:00 300
2017-03-14 00:03:00 400
2017-03-13 23:57:00 500
Name: ACTION, dtype: int64
df['ACTION'] = buy_stp
print (df)
C H L O OI V WAP ACTION
datetime
2017-03-14 00:52:00 8.25 8.25 8.19 8.21 302.0 1769.0 8.22 100
2017-03-13 23:54:00 8.09 8.10 8.09 8.10 6.0 65.0 8.10 200
2017-03-14 01:03:00 8.29 8.32 8.28 8.29 175.0 1084.0 8.30 300
2017-03-14 00:03:00 8.15 8.15 8.14 8.15 13.0 50.0 8.15 400
2017-03-13 23:57:00 8.13 8.13 8.12 8.12 3.0 6.0 8.12 500
如果通过values
或list
转换为numpy array
也有效,只需df
和buy_stp
的长度相同:
df['ACTION'] = buy_stp.values
print (df)
C H L O OI V WAP ACTION
datetime
2017-03-14 00:52:00 8.25 8.25 8.19 8.21 302.0 1769.0 8.22 100
2017-03-13 23:54:00 8.09 8.10 8.09 8.10 6.0 65.0 8.10 200
2017-03-14 01:03:00 8.29 8.32 8.28 8.29 175.0 1084.0 8.30 300
2017-03-14 00:03:00 8.15 8.15 8.14 8.15 13.0 50.0 8.15 400
2017-03-13 23:57:00 8.13 8.13 8.12 8.12 3.0 6.0 8.12 500
df['ACTION'] = buy_stp.tolist()
print (df)
C H L O OI V WAP ACTION
datetime
2017-03-14 00:52:00 8.25 8.25 8.19 8.21 302.0 1769.0 8.22 100
2017-03-13 23:54:00 8.09 8.10 8.09 8.10 6.0 65.0 8.10 200
2017-03-14 01:03:00 8.29 8.32 8.28 8.29 175.0 1084.0 8.30 300
2017-03-14 00:03:00 8.15 8.15 8.14 8.15 13.0 50.0 8.15 400
2017-03-13 23:57:00 8.13 8.13 8.12 8.12 3.0 6.0 8.12 500
【讨论】:
【参考方案2】:如果我理解正确,您只想在数据框中添加一列。如果是这样,这是最简单的方法。
df['Action'] = buy_stp
【讨论】:
这就是我想要做的。看来我的索引需要与 Jezrael 在下面指出的相同。以上是关于Pandas Concat 新专栏的主要内容,如果未能解决你的问题,请参考以下文章
pandas concat 2个数据框,并在合并数据中添加一列新数据。
Pandas 中的 Concat 2 列 - AttributeError:“DataFrame”对象没有属性“concat”