如何向量化嵌套循环
Posted
技术标签:
【中文标题】如何向量化嵌套循环【英文标题】:How to Vectorize a Nested Loop 【发布时间】:2012-11-04 11:01:08 【问题描述】:我无法想象如何矢量化这组循环。任何指导将不胜感激。
ind_1 = [1,2,3];
ind_2 = [1,2,4];
K = zeros(3,3,3,3,3,3,3,3,3);
pp = rand(4,4,4);
for s = 1:3
for t = 1:3
for k = 1:3
for l = 1:3
for m = 1:3
for n = 1:3
for o = 1:3
for p = 1:3
for r = 1:3
% the following loops are singular valued except when
% y=3 for ind_x(y) in this case
for a_s = ind_1(s):ind_2(s)
for a_t = ind_1(t):ind_2(t)
for a_k = ind_1(k):ind_2(k)
for a_l = ind_1(l):ind_2(l)
for a_m = ind_1(m):ind_2(m)
for a_n = ind_1(n):ind_2(n)
for a_o = ind_1(o):ind_2(o)
for a_p = ind_1(p):ind_2(p)
for a_r = ind_1(r):ind_2(r)
K(s,t,k,l,m,n,o,p,r) = K(s,t,k,l,m,n,o,p,r) + ...
pp(a_s, a_t, a_r) * pp(a_k, a_l, a_r) * ...
pp(a_n, a_m, a_s) * pp(a_o, a_n, a_t) * ...
pp(a_p, a_o, a_k) * pp(a_m, a_p, a_l);
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
end
编辑:
代码通过将每个索引的 pp
s 乘积的值相加一或两次来创建索引从 1 到 3 的 rank-9 张量,具体取决于 ind_1
和 ind_2
的值.
编辑:
这是一个 3d 示例,但请记住,pp
的索引只是简单置换的事实在 9d 版本中没有保留:
ind_1 = [1,2,3];
ind_2 = [1,2,4];
K = zeros(3,3,3);
pp = rand(4,4,4);
for s = 1:3
for t = 1:3
for k = 1:3
% the following loops are singular valued except when
% y=3 for ind_x(y) in this case
for a_s = ind_1(s):ind_2(s)
for a_t = ind_1(t):ind_2(t)
for a_k = ind_1(k):ind_2(k)
K(s,t,k) = K(s,t,k) + ...
pp(a_s, a_t, a_r) * pp(a_t, a_s, a_k) * ...
pp(a_k, a_t, a_s) * pp(a_k, a_s, a_t);
end
end
end
end
end
end
【问题讨论】:
您能详细说明一下这段代码在做什么并添加 cmets 吗? 您能创建一个 2D 或 3D 示例来说明吗?与我们合作会更容易,创建示例可能会帮助您自己制定策略。 @tmpearce:已编辑以提供 3d 示例。 这是一些令人印象深刻的字母水果圈汤。 您是否查看过内置函数:mathworks.nl/help/matlab/ref/kron.html?如果可以使用此功能,我怀疑其他任何东西都会显示出更好的性能。 【参考方案1】:哇!非常简单的解决方案,但并不容易找到。顺便说一句,我想知道你的公式是从哪里来的。
如果您不介意暂时丢失一点内存(2 次 4^9 数组 vs 3^9 之前),您可以在最后推迟第 3 和第 4 超平面的累积。
在 unix 机器上使用 octave 3.2.4 进行测试,它从 23s (67Mb) 下降到 0.17s (98Mb)。
function K = tensor9_opt(pp)
ppp = repmat(pp, [1 1 1 4 4 4 4 4 4]) ;
% The 3 first numbers are variable indices (eg 1 for a_s to 9 for a_r)
% Other numbers must complete 1:9 indices in any order
T = ipermute(ppp, [1 2 9 3 4 5 6 7 8]) .* ...
ipermute(ppp, [3 4 9 1 2 5 6 7 8]) .* ...
ipermute(ppp, [6 5 1 2 3 4 7 8 9]) .* ...
ipermute(ppp, [7 6 2 1 3 4 5 8 9]) .* ...
ipermute(ppp, [8 7 3 1 2 4 5 6 9]) .* ...
ipermute(ppp, [5 8 4 1 2 3 6 7 9]) ;
% I have not found how to manipulate 'multi-ranges' programmatically.
T1 = T (:,:,:,:,:,:,:,:,1:end-1) ; T1(:,:,:,:,:,:,:,:,end) += T (:,:,:,:,:,:,:,:,end) ;
T = T1(:,:,:,:,:,:,:,1:end-1,:) ; T (:,:,:,:,:,:,:,end,:) += T1(:,:,:,:,:,:,:,end,:) ;
T1 = T (:,:,:,:,:,:,1:end-1,:,:) ; T1(:,:,:,:,:,:,end,:,:) += T (:,:,:,:,:,:,end,:,:) ;
T = T1(:,:,:,:,:,1:end-1,:,:,:) ; T (:,:,:,:,:,end,:,:,:) += T1(:,:,:,:,:,end,:,:,:) ;
T1 = T (:,:,:,:,1:end-1,:,:,:,:) ; T1(:,:,:,:,end,:,:,:,:) += T (:,:,:,:,end,:,:,:,:) ;
T = T1(:,:,:,1:end-1,:,:,:,:,:) ; T (:,:,:,end,:,:,:,:,:) += T1(:,:,:,end,:,:,:,:,:) ;
T1 = T (:,:,1:end-1,:,:,:,:,:,:) ; T1(:,:,end,:,:,:,:,:,:) += T (:,:,end,:,:,:,:,:,:) ;
T = T1(:,1:end-1,:,:,:,:,:,:,:) ; T (:,end,:,:,:,:,:,:,:) += T1(:,end,:,:,:,:,:,:,:) ;
K = T (1:end-1,:,:,:,:,:,:,:,:) ; K (end,:,:,:,:,:,:,:,:) += T (end,:,:,:,:,:,:,:,:) ;
endfunction
pp = rand(4,4,4);
K = tensor9_opt(pp) ;
【讨论】:
以上是关于如何向量化嵌套循环的主要内容,如果未能解决你的问题,请参考以下文章