将数据框中的值列表附加到新列[重复]
Posted
技术标签:
【中文标题】将数据框中的值列表附加到新列[重复]【英文标题】:Appending a list of values in a dataframe to a new column [duplicate] 【发布时间】:2020-09-12 02:30:57 【问题描述】:我有一个包含如下推文的数据框:
我要做的是从列“in_reply_to_user_id”(不在图片中,因为 df 太宽而无法容纳)与给定 id 具有相同值的行中获取文本,并将文本附加到然后我想把它放在一个新列中。例如,列“in_reply_to_user_id”等于第一条推文的“id”的所有推文中的文本应该放在一个列表中,然后将其附加到数据框中称为“回复”的新列中。以下是我尝试过的一些事情:
for i in testb['in_reply_to_user_id']:
for j in test['user.id']:
if i == j:
index=testb.index()
test['replies'].append(testb['text'].iloc[index]) ```
test would be the original dataframe and testb would be a copy that i created in order to try to run the code above. it is just a copy of test.
【问题讨论】:
【参考方案1】:这是一个简单的解决方案,遍历所有行。
import numpy as np
import pandas as pd
# example data
df = pd.DataFrame('id': [1, 2, 3, 4],
'text': ['How are you?', 'Fine.', 'Okay.', 'hi'],
'in_reply_to_user_id': [4, 1, 1, 3])
# initiate new column
df['replies'] = np.repeat(None, len(df))
# assign lists as described in the question
for i in df.index:
df.at[i, 'replies'] = list(df.text[df.in_reply_to_user_id == df.id[i]])
# show results
df
id text in_reply_to_user_id replies
0 1 How are you? 4 [Fine., Okay.]
1 2 Fine. 1 []
2 3 Okay. 1 [hi]
3 4 hi 3 [How are you?]
【讨论】:
使用你提供的代码给了我错误:'BlockManager' object has no attribute t @Luca Marinescu 嗯,你能说得更具体点吗?哪一行导致错误?什么是追溯?您能否缩小导致错误的数据的哪一部分?【参考方案2】:假设原始 Dataframe 如下所示:
text user_id reply_to
0 this is reply to 3 1 3
1 this is reply to 3 2 3
2 this is reply to 2 3 2
3 this is reply to 2 4 2
4 this is reply to 1 5 1
然后通过使用 df.loc() 我们可以获得包含对每个文本的回复的记录:
import pandas as pd
data = [['this is reply to 3', 1, 3], ['this is reply to 3', 2, 3],['this is
reply to 2', 3, 2],['this is reply to 2', 4, 2], ['this is reply to 1', 5,1 ]]
df = pd.DataFrame(data, columns = ['text', 'user_id', 'reply_to'])
replies = []
for user_id in df.user_id:
text = df.loc[df['reply_to'] == user_id].text.values
replies.append(text)
df['replies'] = replies
生成的 Dataframe 如下所示:
text user_id reply_to replies
0 this is reply to 3 1 3 [this is reply to 1]
1 this is reply to 3 2 3 [this is reply to 2, this is reply to 2]
2 this is reply to 2 3 2 [this is reply to 3, this is reply to 3]
3 this is reply to 2 4 2 []
4 this is reply to 1 5 1 []
【讨论】:
你好@AmrSherbiny!请直接将您的数据框粘贴到您的答案中,这样社区可以更轻松地阅读或复制/粘贴它。以上是关于将数据框中的值列表附加到新列[重复]的主要内容,如果未能解决你的问题,请参考以下文章
将来自一个数据框的值合并到 Pandas 中的新列中[重复]
如何将列表中的值分配给熊猫数据框并控制每个列表元素在数据框中的分布/频率
如何将 CSV 值与 pyspark 数据框中的单元格中的值分别分隔为新列及其值