opencv 和 python - 激光曲线检测
Posted
技术标签:
【中文标题】opencv 和 python - 激光曲线检测【英文标题】:opencv and python - Laser curved line detection 【发布时间】:2015-05-27 09:14:06 【问题描述】:我正在尝试获取位于该曲线中间的一组点。 我找到了这个脚本,但我的激光图像不起作用......
im_gray = cv2.imread(img, cv2.CV_LOAD_IMAGE_GRAYSCALE)
im_gray = cv2.Canny(im_gray,50,150,apertureSize = 3)
ret, im_bw = cv2.threshold(im_gray, 0, 255, cv2.THRESH_BINARY)
#(thresh, im_bw) = cv2.threshold(im_gray, 128, 255, cv2.THRESH_BINARY | cv2.THRESH_OTSU)
#thresh = 127
#im_bw = cv2.threshold(im_gray, thresh, 255, cv2.THRESH_BINARY)[1]
#ret, bw = cv2.threshold(im_bw, 0, 255, cv2.THRESH_BINARY)
cv2.imwrite('resultpoint_bw.png',im_bw)
# find contours of the binarized image
contours, heirarchy = cv2.findContours(im_bw, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
# curves
curves = np.zeros((im_bw.shape[0], im_bw.shape[1], 3), np.uint8)
cv2.imwrite('resultpoint_bw_2.png',im_bw)
for i in range(len(contours)):
# for each contour, draw the filled contour
draw = np.zeros((im_bw.shape[0], im_bw.shape[1]), np.uint8)
cv2.drawContours(draw, contours, i, (255,255,255), -1)
# for each column, calculate the centroid
for col in range(draw.shape[0]):
M = cv2.moments(draw[:, col])
if M['m00'] != 0:
x = col
y = int(M['m01']/M['m00'])
curves[y, x, :] = (0, 0, 255)
cv2.imwrite('resultpoint_0.png',curves)
在结果图像中,点是错误的,因为是轮廓,不需要轮廓,而是中间的单点...
有没有可能做这个?
【问题讨论】:
为什么这个标签是java
和c++
?
因为我错了 :) 我只需要 pyton、c++ 和 opencv 标签
你能添加你的图片样本吗?
在这里你可以找到img s2.postimg.org/z3dg3qz95/test.jpg
您的问题解决了吗?如果对您有帮助,请标记为答案!
【参考方案1】:
您可以应用这些简单的步骤来获得这条中心线。
-
阈值二进制反转
应用Thinning algorithm 减少厚度。
在二值图像中查找非零像素。
void thinningIteration(Mat& im, int iter)
Mat marker = Mat::zeros(im.size(), CV_8UC1);
for (int i = 1; i < im.rows-1; i++)
for (int j = 1; j < im.cols-1; j++)
uchar p2 = im.at<uchar>(i-1, j);
uchar p3 = im.at<uchar>(i-1, j+1);
uchar p4 = im.at<uchar>(i, j+1);
uchar p5 = im.at<uchar>(i+1, j+1);
uchar p6 = im.at<uchar>(i+1, j);
uchar p7 = im.at<uchar>(i+1, j-1);
uchar p8 = im.at<uchar>(i, j-1);
uchar p9 = im.at<uchar>(i-1, j-1);
int A = (p2 == 0 && p3 == 1) + (p3 == 0 && p4 == 1) +
(p4 == 0 && p5 == 1) + (p5 == 0 && p6 == 1) +
(p6 == 0 && p7 == 1) + (p7 == 0 && p8 == 1) +
(p8 == 0 && p9 == 1) + (p9 == 0 && p2 == 1);
int B = p2 + p3 + p4 + p5 + p6 + p7 + p8 + p9;
int m1 = iter == 0 ? (p2 * p4 * p6) : (p2 * p4 * p8);
int m2 = iter == 0 ? (p4 * p6 * p8) : (p2 * p6 * p8);
if (A == 1 && (B >= 2 && B <= 6) && m1 == 0 && m2 == 0)
marker.at<uchar>(i,j) = 1;
im &= ~marker;
void thinning(Mat& im)
im /= 255;
Mat prev = Mat::zeros(im.size(), CV_8UC1);
Mat diff;
do
thinningIteration(im, 0);
thinningIteration(im, 1);
absdiff(im, prev, diff);
im.copyTo(prev);
while (countNonZero(diff) > 0);
im *= 255;
void main()
Mat mSource_Bgr,mSource_Gray,mThreshold,mThinning;
mSource_Bgr= imread(FileName_S.c_str(),IMREAD_COLOR);
mSource_Gray= imread(FileName_S.c_str(),0);
threshold(mSource_Gray,mThreshold,50,255,THRESH_BINARY);
mThinning= mThreshold.clone();
thinning(mThinning);
imshow("mThinning",mThinning);
vector<Point2i> locations; // output, locations of non-zero pixels
findNonZero(mThinning, locations);
for (int i = 0; i < locations.size(); i++)
circle(mSource_Bgr,locations[i],2,Scalar(0,255,0),1);
imshow("mResult",mSource_Bgr);
【讨论】:
非常感谢!现在我需要在 python 中转换你的脚本。可以提取坐标吗? 我投了赞成票,但请注意,激光散斑通常意味着最亮的像素不会位于中心。您需要先进行大量模糊/平滑处理,或者使用加权平均值来获得准确的激光线中心。【参考方案2】:我在 python 中找到了解决方案:
import cv2
import numpy as np
import glob
import json, io
from matplotlib import pyplot as plt
from PIL import Image
img = cv2.imread(fname, 0);
i = Image.fromarray(self.__imgremapped_bw)
pixels = i.load() # this is not a list
self.__pointsData = [];
find = 0
for y in range(self.__top,self.__bottom):
row_averages = []
for x in range(self.__top,self.__bottom):
cur_pixel = pixels[x, y]
if cur_pixel >= self.__thresholdColor:
row_averages.append(x)
find = 1
elif find == 1:
pointSum = 0
for idx, val in enumerate(row_averages):
pointSum += row_averages[idx];
xf = pointSum/len(row_averages)
# 0.5 correzione pixel al centro
self.__pointsData.append([[y+0.5,xf+0.5]])
row_averages = []
find = 0
#self.__drawPoint(self.__imgremapped_bw)
return self.__pointsData
self.__top,self.__bottom 和 self.__top,self.__bottom 是一个裁剪区域,用于优化提取点。
self.__pointsData.append([[y+0.5,xf+0.5]])
+0.5 是为了获得中心像素。
在这种情况下,可能会有更多的行,因为这些行:
if cur_pixel >= self.__thresholdColor:
row_averages.append(x)
find = 1
elif find == 1:
pointSum = 0
for idx, val in enumerate(row_averages):
pointSum += row_averages[idx];
xf = pointSum/len(row_averages)
# 0.5 correzione pixel al centro
self.__pointsData.append([[y+0.5,xf+0.5]])
row_averages = []
find = 0
有一个带有颜色范围的媒体点计算。
希望对你有帮助。
谢谢
【讨论】:
以上是关于opencv 和 python - 激光曲线检测的主要内容,如果未能解决你的问题,请参考以下文章