如何使用 Python 优化实时绘制串行数据

Posted

技术标签:

【中文标题】如何使用 Python 优化实时绘制串行数据【英文标题】:How to optimise plotting Serial data in real-time using Python 【发布时间】:2020-01-27 03:23:17 【问题描述】:

我正在尝试实时绘制从串行设备接收到的制表符分隔值。我对 python 还很陌生,但设法拼凑了一个管理它的脚本,但是它似乎无法处理接收数据的速率,并且在减慢并最终冻结之前使用了大量的处理能力。我能做些什么来防止这种情况发生吗?我附上了我正在使用的数据和我的脚本的示例

我收到的数据看起来像这样,并且以大约每半秒一行的速度接收。

546     5986637 3598844 +26.0   01A0
547     5986641 3598843 +25.50  0198
548     5986634 3598844 +24.50  0188
from matplotlib import pyplot as plt
from matplotlib import animation
import serial
from pandas import DataFrame
from datetime import datetime
import csv

filename = datetime.now().strftime("%d-%m-%Y_%I-%M-%S_%p")  # Gets time and date in readable format for filenaming.
Data1 = 'Value': [0], 'Frequency 1': [0], 'Frequency2': [0], 'Temperature': [0]
df = DataFrame(Data1, columns=['Value', 'Frequency1', 'Frequency2', 'Temperature'])
serial_port = 'COM5';  # Different port for linux/mac
baud_rate = 9600;  # In arduino, Serial.begin(baud_rate)
write_to_file_path = "output.txt";
data = []
ft = []
output_file = open(write_to_file_path, "w+");
ser = serial.Serial(serial_port, baud_rate)

plt.ion()
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, sharex=True, sharey=False, )

ax1.set_title('Temp')
ax2.set_title('Freq 1')
ax3.set_title('Freq 2')
ax1.set_ylabel('Temperature')
ax2.set_ylabel('Frequency')
ax3.set_ylabel('Frequency')
ax1.ticklabel_format(useOffset=False)
ax2.ticklabel_format(useOffset=False)
ax3.ticklabel_format(useOffset=False)
ax1.ticklabel_format(style='plain', axis='y', scilimits=(0, 0))
ax2.ticklabel_format(style='sci', axis='y', scilimits=(6, 6))
ax3.ticklabel_format(style='sci', axis='y', scilimits=(6, 6))
while True:
    line = ser.readline();
    line = line.decode("utf-8")  # ser.readline returns a binary, convert to string
    print(line)
    line1 = line.split('\t')  # Separates values by tabs
    output_file.write(line);  # Writes to text file
    data.append(line1)  # Adds line to data file
    newline = [float(line1[0]), float(line1[1]), float(line1[2]), float(line1[3])]  # Creates line of float values
    ft.append(newline)  # Adds to list of floats
    f1 = float(line1[0])  # Line number (count)
    f2 = float(line1[1])  # Frequency 1
    f3 = float(line1[2])  # Frequency 2
    f4 = float(line1[3])  # Temperature in C
    f5 = str(line1[4])  # Temperature in Hex, treated as a string
    #    Data2 = 'Value':[f1],'Frequency 1':[f2],'Frequency2':[f3], 'Temperature':[f4]
    #    df2 = DataFrame(Data2,columns=['Value', 'Frequency1','Frequency2','Temperature'])
    #    df.append(df2)

    # DataFrame still not working, need to fix so that data is stores as integer or float
    plt.pause(0.1)

    ax1.plot(f1, f4, marker='.', linestyle='solid')  # subplot of freq 1
    ax2.plot(f1, f2, marker='.', linestyle='solid')  # subplot of freq 2
    ax3.plot(f1, f3, marker='.', linestyle='solid')  # subplot of Temp in C
    plt.subplot
    plt.xlabel("Count")
    with open(filename + ".csv", "a") as f:  # Writes data to CSV, hex values for temp don't seem to be writing
        writer = csv.writer(f, delimiter=",")
        writer.writerow([f1, f2, f3, f4, f5])

    plt.draw()
    plt.savefig(filename + '.png', bbox_inches='tight')  # Saves the plot

【问题讨论】:

【参考方案1】:

您可以考虑使用线程来拆分您的任务。每次收到新数据时,您可能不需要保存图形。例如,您可以通过仅每 30 秒左右更新一次绘图来减少计算负载。您还可以拆分写入 csv,这样您就拥有三个线程,一个寻找数据,一个存储缓冲数据,一个更新您的绘图。

This answer 可能是一个很好的参考。

在 foo() 结束时,创建一个 Timer,它会在 10 秒后调用 foo() 本身。 因为,Timer 创建了一个新线程来调用 foo()。

import time, threading
def foo():
    print(time.ctime())
    threading.Timer(10, foo).start()

foo()

#output:
#Thu Dec 22 14:46:08 2011
#Thu Dec 22 14:46:18 2011
#Thu Dec 22 14:46:28 2011
#Thu Dec 22 14:46:38 2011

【讨论】:

我已更改它以保存终止时的数字,并且计算负载已从 ~30% 减少到 ~4%。我不熟悉线程,但我也会看看。非常感谢您的帮助。

以上是关于如何使用 Python 优化实时绘制串行数据的主要内容,如果未能解决你的问题,请参考以下文章

Matplotlib“实时”在python中绘图

如何在 python dash 应用程序中绘制来自传感器的串行信号?

如何优化大数据字符串的串行通信?

如何在 PyQtGraph 的一个图中绘制两个实时数据?

Python/MatPlotLib:无法在 y 轴上打印正确的数据

如何使用从串口接收的数据在 Qt 中绘制图形?