从具有大量标签的 Pandas 数据框中创建 TensorFlow 数据集?
Posted
技术标签:
【中文标题】从具有大量标签的 Pandas 数据框中创建 TensorFlow 数据集?【英文标题】:Create a Tensorflow Dataset from a Pandas data frame with numerous labels? 【发布时间】:2021-12-11 20:46:49 【问题描述】:我正在尝试将 pandas 数据帧加载到张量数据集中。 列是文本[字符串]和标签[字符串格式的列表]
一行看起来像: 文本:“嗨,我在这里,....” 标签:[0, 1, 1, 0, 1, 0, 0, 0, ...]
每个文本有 17 个标签的概率。
我找不到将数据集加载为数组的方法,并调用 model.fit() 我阅读了很多答案,尝试在 df_to_dataset() 中使用以下代码。
我无法弄清楚我在这个..中缺少什么..
labels = labels.apply(lambda x: np.asarray(literal_eval(x))) # Cast to a list
labels = labels.apply(lambda x: [0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]) # Straight out list ..
# ValueError: Failed to convert a NumPy array to a Tensor (Unsupported object type list).
打印一行(从返回的数据集中)显示:
('text': <tf.Tensor: shape=(), dtype=string, numpy=b'Text in here'>, <tf.Tensor: shape=(), dtype=string, numpy=b'[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1.0, 0, 0, 0, 0, 0, 0]'>)
当我不使用任何转换时,model.fit 会发送一个异常,因为它不能使用字符串。
UnimplementedError: Cast string to float is not supported
[[node sparse_categorical_crossentropy/Cast (defined at <ipython-input-102-71a9fbf2d907>:4) ]] [Op:__inference_train_function_1193273]
def df_to_dataset(dataframe, shuffle=True, batch_size=32):
dataframe = dataframe.copy()
labels = dataframe.pop('labels')
ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), labels))
return ds
train_ds = df_to_dataset(df_train, batch_size=batch_size)
val_ds = df_to_dataset(df_val, batch_size=batch_size)
test_ds = df_to_dataset(df_test, batch_size=batch_size)
def build_classifier_model():
text_input = tf.keras.layers.Input(shape=(), dtype=tf.string, name='text')
preprocessing_layer = hub.KerasLayer(tfhub_handle_preprocess, name='preprocessing')
encoder_inputs = preprocessing_layer(text_input)
encoder = hub.KerasLayer(tfhub_handle_encoder, trainable=True, name='BERT_encoder')
outputs = encoder(encoder_inputs)
net = outputs['pooled_output']
net = tf.keras.layers.Dropout(0.2)(net)
net = tf.keras.layers.Dense(17, activation='softmax', name='classifier')(net)
return tf.keras.Model(text_input, net)
classifier_model = build_classifier_model()
loss = 'sparse_categorical_crossentropy'
metrics = ["accuracy"]
classifier_model.compile(optimizer=optimizer,
loss=loss,
metrics=metrics)
history = classifier_model.fit(x=train_ds,
validation_data=val_ds,
epochs=epochs)
【问题讨论】:
【参考方案1】:也许在使用tf.data.Dataset.from_tensor_slices
之前尝试预处理您的数据框。这是一个简单的工作示例:
import tensorflow as tf
import tensorflow_text as tf_text
import tensorflow_hub as hub
import pandas as pd
def build_classifier_model():
text_input = tf.keras.layers.Input(shape=(), dtype=tf.string, name='text')
preprocessing_layer = hub.KerasLayer('https://tfhub.dev/tensorflow/bert_en_uncased_preprocess/1', name='preprocessing')
encoder_inputs = preprocessing_layer(text_input)
encoder = hub.KerasLayer('https://tfhub.dev/tensorflow/small_bert/bert_en_uncased_L-2_H-128_A-2/2', trainable=True, name='BERT_encoder')
outputs = encoder(encoder_inputs)
net = outputs['pooled_output']
net = tf.keras.layers.Dropout(0.2)(net)
net = tf.keras.layers.Dense(5, activation='softmax', name='classifier')(net)
return tf.keras.Model(text_input, net)
def remove_and_split(s):
s = s.replace('[', '')
s = s.replace(']', '')
return s.split(',')
def df_to_dataset(dataframe, shuffle=True, batch_size=2):
dataframe = dataframe.copy()
labels = tf.squeeze(tf.constant([dataframe.pop('labels')]), axis=0)
ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), labels)).batch(
batch_size)
return ds
dummy_data = 'text': [
"Improve the physical fitness of your goldfish by getting him a bicycle",
"You are unsure whether or not to trust him but very thankful that you wore a turtle neck",
"Not all people who wander are lost",
"There is a reason that roses have thorns",
"Charles ate the french fries knowing they would be his last meal",
"He hated that he loved what she hated about hate",
], 'labels': ['[0, 1, 1, 1, 1]', '[1, 1, 1, 0, 0]', '[1, 0, 1, 0, 0]', '[1, 0, 1, 0, 0]', '[1, 1, 1, 0, 0]', '[1, 1, 1, 0, 0]']
df = pd.DataFrame(dummy_data)
df["labels"] = df["labels"].apply(lambda x: [int(i) for i in remove_and_split(x)])
batch_size = 2
train_ds = df_to_dataset(df, batch_size=batch_size)
val_ds = df_to_dataset(df, batch_size=batch_size)
test_ds = df_to_dataset(df, batch_size=batch_size)
loss = 'categorical_crossentropy'
metrics = ["accuracy"]
classifier_model = build_classifier_model()
classifier_model.compile(optimizer='adam',
loss=loss,
metrics=metrics)
history = classifier_model.fit(x=train_ds,
validation_data=val_ds,
epochs=5)
并且不要忘记在使用 Bert 预处理层时在 tf.data.Dataset.from_tensor_slices
中包含批量大小。我还将您的损失函数更改为categorical_crossentropy
,因为您正在使用单热编码标签(至少可以从您的问题中推断出来)。 sparse_categorical_crossentropy
损失函数需要整数标签而不是 one-hot 编码。
【讨论】:
您的示例完美运行。您的回答让我明白了我的主要问题之一是我对张量结构缺乏了解。【参考方案2】:您可以在map
方法中使用tf.strings
函数。
import tensorflow as tf
x = ['[0, 1, 0]', '[1, 1, 0]']
def splitter(string):
string = tf.strings.substr(string, 1, tf.strings.length(string) - 2) # no brackets
string = tf.strings.split(string, ', ') # isolate int
string = tf.strings.to_number(string, out_type=tf.int32) # as integer
return string
ds = tf.data.Dataset.from_tensor_slices(x).map(splitter)
next(iter(ds))
<tf.Tensor: shape=(3,), dtype=int32, numpy=array([0, 1, 0])>
话虽如此,您不妨更改您的 DataFrame,以便对目标进行一次性编码。
【讨论】:
以上是关于从具有大量标签的 Pandas 数据框中创建 TensorFlow 数据集?的主要内容,如果未能解决你的问题,请参考以下文章