在较大的图像上覆盖较小的图像 python OpenCv

Posted

技术标签:

【中文标题】在较大的图像上覆盖较小的图像 python OpenCv【英文标题】:overlay a smaller image on a larger image python OpenCv 【发布时间】:2012-12-13 08:07:45 【问题描述】:

您好,我正在创建一个程序,用别人的脸替换图像中的脸。但是,我坚持尝试将新面孔插入到原始的更大图像中。我研究了 ROI 和 addWeight(需要图像大小相同),但我还没有找到在 python 中执行此操作的方法。任何建议都很棒。我是opencv的新手。

我正在使用以下测试图像:

较小的图像:

大图:

到目前为止,这是我的代码......其他示例的混合器:

import cv2
import cv2.cv as cv
import sys
import numpy

def detect(img, cascade):
    rects = cascade.detectMultiScale(img, scaleFactor=1.1, minNeighbors=3, minSize=(10, 10), flags = cv.CV_HAAR_SCALE_IMAGE)
    if len(rects) == 0:
        return []
    rects[:,2:] += rects[:,:2]
    return rects

def draw_rects(img, rects, color):
    for x1, y1, x2, y2 in rects:
        cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)

if __name__ == '__main__':
    if len(sys.argv) != 2:                                         ## Check for error in usage syntax

    print "Usage : python faces.py <image_file>"

else:
    img = cv2.imread(sys.argv[1],cv2.CV_LOAD_IMAGE_COLOR)  ## Read image file

    if (img == None):                                     
        print "Could not open or find the image"
    else:
        cascade = cv2.CascadeClassifier("haarcascade_frontalface_alt.xml")
        gray = cv2.cvtColor(img, cv.CV_BGR2GRAY)
        gray = cv2.equalizeHist(gray)

        rects = detect(gray, cascade)

        ## Extract face coordinates         
        x1 = rects[0][3]
        y1 = rects[0][0]
        x2 = rects[0][4]
        y2 = rects[0][5]
        y=y2-y1
        x=x2-x1
        ## Extract face ROI
        faceROI = gray[x1:x2, y1:y2]

        ## Show face ROI
        cv2.imshow('Display face ROI', faceROI)
        small = cv2.imread("average_face.png",cv2.CV_LOAD_IMAGE_COLOR)  
        print "here"
        small=cv2.resize(small, (x, y))
        cv2.namedWindow('Display image')          ## create window for display
        cv2.imshow('Display image', small)          ## Show image in the window

        print "size of image: ", img.shape        ## print size of image
        cv2.waitKey(1000)              

【问题讨论】:

【参考方案1】:

实现您想要的简单方法:

import cv2
s_img = cv2.imread("smaller_image.png")
l_img = cv2.imread("larger_image.jpg")
x_offset=y_offset=50
l_img[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1]] = s_img

更新

我想您也想处理 Alpha 通道。这是一种快速而肮脏的方法:

s_img = cv2.imread("smaller_image.png", -1)

y1, y2 = y_offset, y_offset + s_img.shape[0]
x1, x2 = x_offset, x_offset + s_img.shape[1]

alpha_s = s_img[:, :, 3] / 255.0
alpha_l = 1.0 - alpha_s

for c in range(0, 3):
    l_img[y1:y2, x1:x2, c] = (alpha_s * s_img[:, :, c] +
                              alpha_l * l_img[y1:y2, x1:x2, c])

【讨论】:

我知道这是一个古老的问题,但您介意在 Alpha 通道示例中添加一个解释吗?我正在进入 cv2 和 python,这些东西对我来说仍然是一个巨大的问号 同意乔纳森的请求。我想知道数学在做什么,以便更好地调试问题 @JonathanCrowe 将 image1 覆盖在 imag2 上,[result-image::rgb channel] = [image1::rgb-channel] * [imag1::alpha-channel] + [image2::rgb-通道] * (1.0-[imag1::alpha-channel])。 @Adib 看到上面的评论 嘿,在更新中你的行被切断了:l_img[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1], c] = 你是什么意思?【参考方案2】:

使用@fireant 的想法,我编写了一个处理叠加层的函数。这适用于任何位置参数(包括否定位置)。

def overlay_image_alpha(img, img_overlay, x, y, alpha_mask):
    """Overlay `img_overlay` onto `img` at (x, y) and blend using `alpha_mask`.

    `alpha_mask` must have same HxW as `img_overlay` and values in range [0, 1].
    """
    # Image ranges
    y1, y2 = max(0, y), min(img.shape[0], y + img_overlay.shape[0])
    x1, x2 = max(0, x), min(img.shape[1], x + img_overlay.shape[1])

    # Overlay ranges
    y1o, y2o = max(0, -y), min(img_overlay.shape[0], img.shape[0] - y)
    x1o, x2o = max(0, -x), min(img_overlay.shape[1], img.shape[1] - x)

    # Exit if nothing to do
    if y1 >= y2 or x1 >= x2 or y1o >= y2o or x1o >= x2o:
        return

    # Blend overlay within the determined ranges
    img_crop = img[y1:y2, x1:x2]
    img_overlay_crop = img_overlay[y1o:y2o, x1o:x2o]
    alpha = alpha_mask[y1o:y2o, x1o:x2o, np.newaxis]
    alpha_inv = 1.0 - alpha

    img_crop[:] = alpha * img_overlay_crop + alpha_inv * img_crop

示例用法:

import numpy as np
from PIL import Image

# Prepare inputs
x, y = 50, 0
img = np.array(Image.open("img_large.jpg"))
img_overlay_rgba = np.array(Image.open("img_small.png"))

# Perform blending
alpha_mask = img_overlay_rgba[:, :, 3] / 255.0
img_result = img[:, :, :3].copy()
img_overlay = img_overlay_rgba[:, :, :3]
overlay_image_alpha(img_result, img_overlay, x, y, alpha_mask)

# Save result
Image.fromarray(img_result).save("img_result.jpg")

结果:

如果您遇到错误或异常输出,请确保:

img 不应包含 Alpha 通道。 (例如,如果是 RGBA,则先转换为 RGB。) img_overlay 的频道数与img 相同。

【讨论】:

IndexError: index 3 is out of bounds for axis 2 with size 3 是这个错误。 如何将较大图像的质心与较小图像的质心重叠?我已经有了这两个图像的质心。我用了上面的函数,但是小图最左边的像素会自动叠加到大图上。 @Schütze 源图像必须转换为 RGBA,例如。 img = cv2.cvtColor(img, cv2.COLOR_RGB2RGBA).copy() 如果 img 不应该有 alpha,也许函数会从检查中受益?他们必须拥有相同数量的频道?假设有一种标准化的检查方式。【参考方案3】:

根据上面 fireant 的出色回答,这里是 alpha 混合,但更易读于人类。您可能需要交换 1.0-alphaalpha,具体取决于您要合并的方向(我的是从 fireant 的答案中交换的)。

o* == s_img.* b* == b_img.*

for c in range(0,3):
    alpha = s_img[oy:oy+height, ox:ox+width, 3] / 255.0
    color = s_img[oy:oy+height, ox:ox+width, c] * (1.0-alpha)
    beta  = l_img[by:by+height, bx:bx+width, c] * (alpha)

    l_img[by:by+height, bx:bx+width, c] = color + beta

【讨论】:

【参考方案4】:

这里是:

def put4ChannelImageOn4ChannelImage(back, fore, x, y):
    rows, cols, channels = fore.shape    
    trans_indices = fore[...,3] != 0 # Where not transparent
    overlay_copy = back[y:y+rows, x:x+cols] 
    overlay_copy[trans_indices] = fore[trans_indices]
    back[y:y+rows, x:x+cols] = overlay_copy

#test
background = np.zeros((1000, 1000, 4), np.uint8)
background[:] = (127, 127, 127, 1)
overlay = cv2.imread('imagee.png', cv2.IMREAD_UNCHANGED)
put4ChannelImageOn4ChannelImage(background, overlay, 5, 5)

【讨论】:

【参考方案5】:

一个简单的函数,将图像front 映射到图像back 上并返回结果。它适用于 3 通道和 4 通道图像并处理 alpha 通道。重叠也得到处理。

输出图像的大小与背面相同,但始终为 4 个通道。 输出 alpha 通道由 (u+v)/(1+uv) 给出,其中 u,v 是前后图像的 alpha 通道,-1

import cv2

def merge_image(back, front, x,y):
    # convert to rgba
    if back.shape[2] == 3:
        back = cv2.cvtColor(back, cv2.COLOR_BGR2BGRA)
    if front.shape[2] == 3:
        front = cv2.cvtColor(front, cv2.COLOR_BGR2BGRA)

    # crop the overlay from both images
    bh,bw = back.shape[:2]
    fh,fw = front.shape[:2]
    x1, x2 = max(x, 0), min(x+fw, bw)
    y1, y2 = max(y, 0), min(y+fh, bh)
    front_cropped = front[y1-y:y2-y, x1-x:x2-x]
    back_cropped = back[y1:y2, x1:x2]

    alpha_front = front_cropped[:,:,3:4] / 255
    alpha_back = back_cropped[:,:,3:4] / 255
    
    # replace an area in result with overlay
    result = back.copy()
    print(f'af: alpha_front.shape\nab: alpha_back.shape\nfront_cropped: front_cropped.shape\nback_cropped: back_cropped.shape')
    result[y1:y2, x1:x2, :3] = alpha_front * front_cropped[:,:,:3] + (1-alpha_front) * back_cropped[:,:,:3]
    result[y1:y2, x1:x2, 3:4] = (alpha_front + alpha_back) / (1 + alpha_front*alpha_back) * 255

    return result

【讨论】:

这是我在这里唯一可以执行的东西,但由于某种原因,它混合得非常糟糕,前面的图像颜色设法与背景或其他东西混合在一起。 等一下,我后来在自己的代码中改了一些东西,我去看看 这是一种混合点,虽然当 alpha_front 这是我遇到的问题:click here 最后我合并了 12 种不同的方法,并使用 addWeighted() 解决了这个问题,并在顶部的编辑器中将背景图像修改为黑色图像将被放置。在我的情况下,前/顶部图像没有任何透明度(或者更确切地说,我不在乎它是否有)所以这对我有用。 see here for that result 我编辑了这个答案以包含我的更改。重要的是倒数第二行的alpha_back * back_cropped[:,:,:3] 更改为(1-alpha_front) * back_cropped[:,:,:3]。因为结果图像的 alpha 通道中已经考虑了 alpha 反向通道。【参考方案6】:

对于只为 s_img 添加一个 alpha 通道,我只在该行之前使用 cv2.addWeighted l_img[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1]] = s_img

如下:s_img=cv2.addWeighted(l_img[y_offset:y_offset+s_img.shape[0], x_offset:x_offset+s_img.shape[1]],0.5,s_img,0.5,0)

【讨论】:

【参考方案7】:

当尝试使用上述任何答案写入目标图像时,您会收到以下错误:

ValueError: assignment destination is read-only

一个快速的潜在解决方法是将 WRITEABLE 标志设置为 true。

img.setflags(write=1)

【讨论】:

【参考方案8】:

一个简单的4on4粘贴功能-

def paste(background,foreground,pos=(0,0)):
    #get position and crop pasting area if needed
    x = pos[0]
    y = pos[1]
    bgWidth = background.shape[0]
    bgHeight = background.shape[1]
    frWidth = foreground.shape[0]
    frHeight = foreground.shape[1]
    width = bgWidth-x
    height = bgHeight-y
    if frWidth<width:
        width = frWidth
    if frHeight<height:
        height = frHeight
    # normalize alpha channels from 0-255 to 0-1
    alpha_background = background[x:x+width,y:y+height,3] / 255.0
    alpha_foreground = foreground[:width,:height,3] / 255.0
    # set adjusted colors
    for color in range(0, 3):
        fr = alpha_foreground * foreground[:width,:height,color]
        bg = alpha_background * background[x:x+width,y:y+height,color] * (1 - alpha_foreground)
        background[x:x+width,y:y+height,color] = fr+bg
    # set adjusted alpha and denormalize back to 0-255
    background[x:x+width,y:y+height,3] = (1 - (1 - alpha_foreground) * (1 - alpha_background)) * 255
    return background

【讨论】:

【参考方案9】:

我重新设计了@fireant 的概念,以允许可选的 alpha 掩码并允许任何 x 或 y,包括图像边界之外的值。它将裁剪到边界。

def overlay_image_alpha(img, img_overlay, x, y, alpha_mask=None):
    """Overlay `img_overlay` onto `img` at (x, y) and blend using optional `alpha_mask`.

    `alpha_mask` must have same HxW as `img_overlay` and values in range [0, 1].
    """

    if y < 0 or y + img_overlay.shape[0] > img.shape[0] or x < 0 or x + img_overlay.shape[1] > img.shape[1]:
        y_origin = 0 if y > 0 else -y
        y_end = img_overlay.shape[0] if y < 0 else min(img.shape[0] - y, img_overlay.shape[0])

        x_origin = 0 if x > 0 else -x
        x_end = img_overlay.shape[1] if x < 0 else min(img.shape[1] - x, img_overlay.shape[1])

        img_overlay_crop = img_overlay[y_origin:y_end, x_origin:x_end]
        alpha = alpha_mask[y_origin:y_end, x_origin:x_end] if alpha_mask is not None else None
    else:
        img_overlay_crop = img_overlay
        alpha = alpha_mask

    y1 = max(y, 0)
    y2 = min(img.shape[0], y1 + img_overlay_crop.shape[0])

    x1 = max(x, 0)
    x2 = min(img.shape[1], x1 + img_overlay_crop.shape[1])

    img_crop = img[y1:y2, x1:x2]
    img_crop[:] = alpha * img_overlay_crop + (1.0 - alpha) * img_crop if alpha is not None else img_overlay_crop

【讨论】:

以上是关于在较大的图像上覆盖较小的图像 python OpenCv的主要内容,如果未能解决你的问题,请参考以下文章

Jcrop - 弹出窗口中图像尺寸较小的问题

如何使用 Python PIL 模糊图像的非矩形或圆形区域?

利用Python创作热力图

您能否仅将较大的磁盘映像的较小矩形部分加载到内存中?

如何动画调整滚动上较小的徽标图像?

如何在Keras中使用中级微调?