检测边缘(连接边缘)并找到边缘长度和连接分量回转半径
Posted
技术标签:
【中文标题】检测边缘(连接边缘)并找到边缘长度和连接分量回转半径【英文标题】:detecting edges(connected edges) and finding edge length and connected component Radius of gyration 【发布时间】:2016-12-16 18:31:19 【问题描述】:original image 我正在尝试检测此图像中连接边界的集群。我需要找到这些边缘的长度以及各个集群的回转半径。 我正在使用 opencv 2.4.13。 我使用以下代码使用轮廓检测质量簇。
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/imgproc/imgproc.hpp"
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
using namespace cv;
using namespace std;
Mat src; Mat src_gray;
int thresh = 100;
int max_thresh = 255;
RNG rng(12345);
/// Function header
void thresh_callback(int, void* );
/** @function main */
int main( int argc, char** argv )
/// Load source image and convert it to gray
src = imread( argv[1], 1 );
/// Convert image to gray and blur it
cvtColor( src, src_gray, CV_BGR2GRAY );
blur( src_gray, src_gray, Size(3,3) );
/// Create Window
char* source_window = "Source";
namedWindow( source_window, CV_WINDOW_AUTOSIZE );
imshow( source_window, src );
createTrackbar( " Canny thresh:", "Source", &thresh, max_thresh, thresh_callback );
thresh_callback( 0, 0 );
waitKey(0);
return(0);
/** @function thresh_callback */
void thresh_callback(int, void* )
Mat canny_output;
vector<vector<Point> > contours;
vector<Vec4i> hierarchy;
/// Detect edges using canny
Canny( src_gray, canny_output, thresh, thresh*2, 3 );
/// Find contours
findContours( canny_output, contours, hierarchy, CV_RETR_TREE, CV_CHAIN_APPROX_SIMPLE, Point(0, 0) );
/// Get the moments
vector<Moments> mu(contours.size() );
for( int i = 0; i < contours.size(); i++ )
mu[i] = moments( contours[i], false );
/// Get the mass centers:
vector<Point2f> mc( contours.size() );
for( int i = 0; i < contours.size(); i++ )
mc[i] = Point2f( mu[i].m10/mu[i].m00 , mu[i].m01/mu[i].m00 );
/// Draw contours
Mat drawing = Mat::zeros( canny_output.size(), CV_8UC3 );
Mat drawing2 = Mat::zeros( canny_output.size(), CV_8UC3 );
for( int i = 0; i< contours.size(); i++ )
if(arcLength( contours[i], true )>900)
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
drawContours( drawing, contours, i, color, 2, 8, hierarchy, 0, Point() );
circle( drawing, mc[i], 4, color, -1, 8, 0 );
int length=0;
int j=0;
for( int i = 0; i< contours.size(); i++ )
if(arcLength( contours[i], true )>length)
length=arcLength( contours[i], true );
j=i;
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
drawContours( drawing2, contours, j, color, 2, 8, hierarchy, 0, Point() );
circle( drawing2, mc[j], 4, color, -1, 8, 0 );
/// Show in a window
namedWindow( "Contours", CV_WINDOW_AUTOSIZE );
imshow( "Contours", drawing );
namedWindow( "Contours2", CV_WINDOW_AUTOSIZE );
imshow( "Contours_max", drawing2 );
/// Calculate the area with the moments 00 and compare with the result of the OpenCV function
printf("\t Info: Area and Contour Length \n");
for( int i = 0; i< contours.size(); i++ )
if(arcLength( contours[i], true )>900)
printf(" * Contour[%d] - Area (M_00) = %.2f - Area OpenCV: %.2f - Length: %.2f \n", i, mu[i].m00, contourArea(contours[i]), arcLength( contours[i], true ) );
Scalar color = Scalar( rng.uniform(0, 255), rng.uniform(0,255), rng.uniform(0,255) );
drawContours( drawing, contours, i, color, 2, 8, hierarchy, 0, Point() );
circle( drawing, mc[i], 4, color, -1, 8, 0 );
问题是公共共享边的轮廓变得不同,从逻辑上讲,它们应该属于同一个集群。我给出的以下轮廓图像。 contour extracted above a certain length
我们可以看到许多具有相同共享边的轮廓被分别视为不同的轮廓。我希望它们成为相同边界集群的一部分。还建议我如何检测边界的长度和回转半径。 请帮忙。
【问题讨论】:
【参考方案1】:我对你的问题感到非常困惑(希望在评论中澄清,但我太菜鸟无法评论)
根据我的所见所闻,我唯一的建议是您可能不想使用精明的过滤器。需要明确的是,您的原始图像已经有边缘......运行一个精明的过滤器会给你“双边缘”,我认为你不想要,但同样,我什至不确定你想要实现什么。
【讨论】:
以上是关于检测边缘(连接边缘)并找到边缘长度和连接分量回转半径的主要内容,如果未能解决你的问题,请参考以下文章
毕业设计/Matlab系列基于NSCT和改进Canny的图像边缘检测matlab实现