calcOpticalFlowPyrLK 在高 FPS 下性能更差

Posted

技术标签:

【中文标题】calcOpticalFlowPyrLK 在高 FPS 下性能更差【英文标题】:calcOpticalFlowPyrLK performance worse at high FPS 【发布时间】:2014-03-05 17:03:02 【问题描述】:

我正在使用 cv::calcOpticalFlowPyrLK 来计算视频序列中从一帧到另一帧的光流。我注意到,与低 fps 相比,高 fps 下的跟踪精度较低。

源 fps 为 30fps,我发现如果我将其向下采样 8,则跟踪比使用所有帧要准确得多。

帧大小为360*480,搜索窗口大小为21*21

感谢任何帮助!

【问题讨论】:

我注意到了类似的问题。我制作了一个 4 帧的帧缓冲区,并在当前帧和之前的第 4 帧之间进行了光流 LK。我稍后会发布我的代码。 【参考方案1】:

主cpp

#include <iostream>
#include <queue>
#include <opencv2/opencv.hpp>
#include "corner_tracker.h"
using namespace std;
using namespace cv;

int main(int argc, char** argv) 
  if (argc != 2) 
    cout << "usage: " << argv[0] << " <video path>" << endl;
    exit(1);
  
  int frame_lag = 4;
  string video_filepath(argv[1]);
  VideoCapture vidcap(video_filepath);
  Mat ref_frame, curr_frame, prev_frame;
  queue<Mat> frame_buffer;
  vector<Point2f> tracked_corners;
  vector<Point2f> optical_flow;
  CornerTrackerParameterBlock param;
  CornerTracker corner_tracker(param);
  Mat mask;
  while (true)
    vidcap >> ref_frame;
    if (ref_frame.empty()) break;
    cvtColor(ref_frame, curr_frame, CV_BGR2GRAY);

    Mat tmp_frame;
    curr_frame.copyTo(tmp_frame);
    frame_buffer.push(tmp_frame);
    if ((int)frame_buffer.size() < frame_lag+1 ) 
      continue;
    
    prev_frame = frame_buffer.front();
    frame_buffer.pop();
    corner_tracker.TrackCorners(prev_frame, curr_frame, mask, 100, tracked_corners, optical_flow);
    for (int i = 0; i < (int)tracked_corners.size(); i++) 
      //because optical flow is calculated between current frame and the frame_lag frame before it
      //the actual value of the optical flow vector has to be normalized
      Point2f normalized_optical_flow = optical_flow[i]*(1.0/(double)frame_lag);
      line(ref_frame, tracked_corners[i], tracked_corners[i] + normalized_optical_flow, Scalar(0,255,0));
      circle(ref_frame, tracked_corners[i], 2, Scalar(0,0,255));
    
    imshow("window",ref_frame);
    if((char)waitKey(30) == 27) 
      break;
    
  
  return 0;

角点跟踪器头文件

#ifndef CORNER_TRACKER_H_
#define CORNER_TRACKER_H_
#include <opencv2/core/core.hpp>

struct CornerTrackerParameterBlock 
  double lkt_max_bidirectioal_error;
  int lkt_maxlevel;
  int lkt_winsize;
  int feature_blocksize;
  double feature_k;
  double feature_mindist;
  double feature_quality_level;

//default constructor
CornerTrackerParameterBlock(void) :
  lkt_max_bidirectioal_error(2.0),
  lkt_maxlevel(3),
  lkt_winsize(16),
  feature_blocksize(3),
  feature_k(0.04),
  feature_mindist(5.0),
  feature_quality_level(0.01)
  
;

class CornerTracker 
public:
  CornerTracker(const CornerTrackerParameterBlock& param);
  void TrackCorners(const cv::Mat& prev_frame, const cv::Mat& curr_frame, const cv::Mat& mask, int max_corners, std::vector<cv::Point2f>& tracked_corners, std::vector<cv::Point2f>& optical_flow_vectors) const;
private:
  void AddAdditionalCorners(const cv::Mat& curr_frame, const cv::Mat& mask, int max_corners, std::vector<cv::Point2f>& tracked_corners) const;
  CornerTrackerParameterBlock m_param;
;

#endif //CORNER_TRACKER_H_

角点跟踪器 cpp 文件

#include <iostream>
#include <opencv2/imgproc/imgproc.hpp>
#include <opencv2/video/tracking.hpp>
#include "corner_tracker.h"

using namespace std;
using namespace cv;

CornerTracker::CornerTracker(const CornerTrackerParameterBlock& param) :
  m_param(param)


void CornerTracker::AddAdditionalCorners(const cv::Mat& curr_frame, const cv::Mat& mask, int max_corners, std::vector<cv::Point2f>& tracked_corners) const 
  //detect additional features
  int additional_corners = max_corners - tracked_corners.size();
  if (additional_corners <= 0) return;
  //generate mask
  Mat tmp_mask;
  if (mask.rows != curr_frame.rows || mask.cols != curr_frame.cols || mask.type() != CV_8U) 
    tmp_mask.create(curr_frame.rows, curr_frame.cols, CV_8U);
    tmp_mask = Scalar::all(255);
  
  else 
    mask.copyTo(tmp_mask);
  
  //mask out current points
  for (const Point2f& p : tracked_corners) 
    circle(tmp_mask, p, m_param.feature_mindist, Scalar::all(0), -1); //filled black circle
  
  vector<Point2f> corners;
  goodFeaturesToTrack(curr_frame, corners, additional_corners, m_param.feature_quality_level, m_param.feature_mindist, tmp_mask, m_param.feature_blocksize, true, m_param.feature_k );
  for (const Point2f& p : corners) 
    tracked_corners.push_back(p);
  


void CornerTracker::TrackCorners(const cv::Mat& prev_frame, const cv::Mat& curr_frame, const cv::Mat& mask, int max_corners, std::vector<cv::Point2f>& tracked_corners, std::vector<cv::Point2f>& optical_flow_vectors) const 
  AddAdditionalCorners(curr_frame, mask, max_corners, tracked_corners);
  vector<Point2f> prev_corners(tracked_corners);
  vector<Point2f> next_corners(tracked_corners);
  //optical flow corner tracking
  vector<uchar> status1,status2;
  vector<float> error1,error2;
  calcOpticalFlowPyrLK(curr_frame, prev_frame, tracked_corners, prev_corners, status1, error1, Size(m_param.lkt_winsize,m_param.lkt_winsize), m_param.lkt_maxlevel, TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), OPTFLOW_USE_INITIAL_FLOW);
  calcOpticalFlowPyrLK(prev_frame, curr_frame, prev_corners, next_corners, status2, error2, Size(m_param.lkt_winsize,m_param.lkt_winsize), m_param.lkt_maxlevel, TermCriteria(TermCriteria::COUNT+TermCriteria::EPS, 30, 0.01), OPTFLOW_USE_INITIAL_FLOW);
  //check tracked corner quality
  vector<Point2f> temp_corners;
  optical_flow_vectors.clear();
  for (unsigned int i = 0; i < tracked_corners.size(); i++) 
    if (status1[i] == 0 || status2[i] == 0) 
      continue;
    
    float bidirectional_error = norm(next_corners[i] - tracked_corners[i]);
    //bidirectional error check
    if (bidirectional_error > m_param.lkt_max_bidirectioal_error) 
      continue;
    
    optical_flow_vectors.push_back(tracked_corners[i] - prev_corners[i]);
    temp_corners.push_back(tracked_corners[i]);
  
  tracked_corners.swap(temp_corners);

【讨论】:

感谢您发布代码!我正在做类似的事情,只是我的点是我需要跨视频帧跟踪的手工挑选点。希望有人知道高 fps 问题是怎么回事。 我实际上希望通过提高 fps 来提高准确性。 也许可以尝试使用SIFT或其他特征点检测结合LKT。【参考方案2】:

实际上,我发现我的问题是代码中的浮点到整数转换错误。

在我的代码中,我循环遍历所有帧,并进行了从光流跟踪点到 IOS 点(CGPoint)的转换,然后再返回。在这个过程中,我不小心从 float 转换为 int(我使用 cv::Point 而不是 cv::Point2f)。

在高 fps 下性能变差,因为错误累积的次数更多,因为跟踪被调用的次数更多。

【讨论】:

【参考方案3】:

如果视频质量发生变化,也可能发生这种情况。在较低的 FPS 但相同的 kBPS 下,某些类型的视频编码器(例如 h.264)有更多的比特来编码每一帧,从而获得更高的质量。

【讨论】:

以上是关于calcOpticalFlowPyrLK 在高 FPS 下性能更差的主要内容,如果未能解决你的问题,请参考以下文章

Python Keras LSTM 学习在高损失时收敛过快

巨人大哥谈缓存在高并发场景下使用法则

互联网应用在高并发

calcOpticalFlowPyrLK 在高 FPS 下性能更差

在高分辨率 iOS 设备上拍摄时,屏幕截图太大

Docker在高负载下阻止传出连接?