提高在大型矩阵中计算加权 Jaccard 的性能
Posted
技术标签:
【中文标题】提高在大型矩阵中计算加权 Jaccard 的性能【英文标题】:Improve performance for computing Weighted Jaccard in a large matrix 【发布时间】:2018-10-09 17:37:09 【问题描述】:R 输入:一个矩阵(测量 x 个样本)(2291 x 265)(矩阵 [i,j]=0 到 1 之间的值)
输出:在所有样本对之间计算的加权 jaccard 的对称相似矩阵
问题:找到产生输出的最快方法。我找到了使用“doParallel”和“foreach”的好方法,但这还不够,因为它仍然太慢。我没有找到任何具有能够计算加权 jaccard 函数的包,但也许我错过了它。无论如何,您可以用您喜欢的解决方案和方法进行回复。谢谢大家会回答。 这是我现在的脚本:
rm(list=ls())
#Load libraries ----
require(doParallel)
require(foreach)
require(doSNOW)
require(doMPI)
#Imported data ----
dim(input_m) #2291 x 265
#Set clusters ----
no_cores <- 3
cl <- makeCluster(as.integer(no_cores))
registerDoParallel(cl)
#I build all the combinations of the pairs of samples ----
samples=seq(1:ncol(input_m))
combs<-as.matrix(expand.grid(samples,samples))
combs<-unique(t(parApply(cl=cl, combs, 1, sort)))
#Prepare the resulting matrix ----
res_m <- matrix(ncol = ncol(input_m), nrow = ncol(input_m))
rownames(res_m)=colnames(input_m)
colnames(res_m)=colnames(input_m)
#Compute Weighted Jaccard similarity btw all pairs of samples ----
sim_m=foreach(s = 1:nrow(combs), .combine=rbind, .noexport=c("pair","num","den"), .inorder=FALSE) %dopar%
pair=input_m[,c(combs[s,1],combs[s,2])]
num=sum(apply(pair,1,min))
den=sum(apply(pair,1,max))
return(c(combs[s,1],combs[s,2],num/den))
#Fill the prepared matrix with the results in sim_m
for (k in 1:nrow(sim_m))
sim=sim_m[k,3]
idx1=sim_m[k,1]
idx2=sim_m[k,2]
res_m[idx1,idx2]=sim
res_m[idx2,idx1]=sim
#Stop clusters
stopCluster(cl)
【问题讨论】:
你可以看看proxy
包。我知道它有 Jaccard 的方法,但不确定加权方面。无论如何可能值得一试。
@lmo 代理包没有实现 WJ。它允许定义一个自定义函数,但它不会改变性能,因为它会再次取决于我的脚本。不过,感谢您的回答,任何反馈都很重要。
【参考方案1】:
使用您的答案和@HenrikB cmets,我设法编写了一种更快的方法:
## simulate data
nr <- 2291; nc <- 265
set.seed(420)
input_m <- matrix(rnorm(nr * nc), nrow = nr, ncol = nc)
input_m[1:5, 1:5]
# [,1] [,2] [,3] [,4] [,5]
# [1,] -0.76774389 1.2623614 2.44166184 -1.86900934 1.61130129
# [2,] -1.44513238 -0.5469383 -0.31919480 -0.03155421 0.09293325
# [3,] -0.71767075 -0.2753542 2.28792301 0.41545393 -0.47370802
# [4,] 0.06410398 1.4956864 0.06859527 2.19689076 -0.96428109
# [5,] -1.85365878 0.1609678 -0.52191522 -0.79557319 -0.33021108
jaccardLuke <- function(input_m)
res_m = outer(1:ncol(input_m), 1:ncol(input_m) ,
FUN = Vectorize(function(r,c)
require(matrixStats)
sum(rowMins(input_m[,c(r,c)]))/sum(rowMaxs(input_m[,c(r,c)]))
)
)
rownames(res_m) = colnames(input_m)
colnames(res_m) = colnames(input_m)
res_m
jaccardHenrikB <- function(input_m)
require(matrixStats)
res_m = outer(1:ncol(input_m), 1:ncol(input_m) ,
FUN = Vectorize(function(r, r2)
x <- rowRanges(input_m, cols = c(r, r2))
s <- colSums(x)
s[1] / s[2]
)
)
rownames(res_m) = colnames(input_m)
colnames(res_m) = colnames(input_m)
res_m
我的功能:
jaccardMinem <- function(input_m)
require(data.table)
require(matrixStats)
samples <- 1:ncol(input_m)
comb <- CJ(samples, samples)
comb[, i := .I]
comb <- melt(comb, 'i')
setorder(comb, value)
v2 <- paste0("V", 1:2)
comb[, variable2 := v2 , keyby = i]
comb2 <- dcast(comb, i ~ variable2, value.var = 'value')
combUnique <- unique(comb2, by = c('V1', 'V2'))
XX <- apply(combUnique[, -'i'], 1, function(x)
x2 <- rowRanges(input_m, cols = x)
s <- colSums2(x2)
s[1] / s[2]
)
set(combUnique, j = 'xx', value = XX)
rez2 <- merge(comb2, combUnique[, -'i'], by = c('V1', 'V2'), all.x = T)
setorder(rez2, i)
rez2 <- array(rez2$xx, dim = rep(ncol(input_m), 2))
rownames(rez2) <- colnames(input_m)
colnames(rez2) <- colnames(input_m)
rez2
测试是否全部相等:
all.equal(jaccardLuke(input_m), jaccardHenrikB(input_m))
# [1] TRUE
all.equal(jaccardLuke(input_m), jaccardMinem(input_m))
# [1] TRUE
基准测试:
system.time(jaccardLuke(input_m)) # 6.05 sek
system.time(jaccardHenrikB(input_m)) # 2.75 sek
system.time(jaccardMinem(input_m)) # 1.74 sek
## for larger data:
nr <- 5000; nc <- 500
set.seed(420)
input_m <- matrix(rnorm(nr * nc), nrow = nr, ncol = nc)
system.time(jaccardLuke(input_m)) # 41.55 sek
system.time(jaccardHenrikB(input_m)) # 19.87 sek
system.time(jaccardMinem(input_m)) # 11.17 sek
主要区别在于我首先计算我们需要计算值的唯一索引组合
【讨论】:
哇,这是我无法想象的解决方案。感谢您的回答,也感谢您改进了我在 R 中编码的方式。 哇,我用另外两个代码实现对此进行了测试,结果是最快的。感谢您对这个问题的杰出贡献。【参考方案2】:我找到了一个很好的解决方案,把原来的代码全部替换掉,几行代码就解决了问题。
rm(list=ls())
load("data.rda")
# dim(input_m) 2291 x 265
res_m=outer(1:ncol(input_m), 1:ncol(input_m) , FUN=Vectorize(function(r,c)
require(matrixStats);
sum(rowMins(input_m[,c(r,c)]))/sum(rowMaxs(input_m[,c(r,c)]))))
rownames(res_m)=colnames(input_m)
colnames(res_m)=colnames(input_m)
【讨论】:
1.而不是rowMins(input_m[,c(r,c)])
使用rowMins(input_m, cols = c(r,c))
,类似地用于rowMaxs()。这将在内部进行矩阵子集化,而无需创建副本;效率更高(速度和内存)。 2. 使用library(matrixStats)
- 你很少需要require()
。
进一步的改进是使用 r <- rowRanges(input_m, cols = c(r,c))
一次性计算 (min, max)。然后执行s <- colSums(r)
并返回s[1] / s[2]
。 ...并将library(matrixStats)
移到outer()
调用之外,以避免一遍又一遍地调用它。
感谢您的评论;加上@minem 的回答,你完全解决了我的问题。【参考方案3】:
我没有可以为您运行的完整版本,因为我不完全确定输入是什么样的以及所需的输出应该是什么。不过,我确实有一些提示可以显着加快您的代码速度。
第 1 步
你最大的麻烦就是这段代码
samples=seq(1:ncol(input_m))
combs<-as.matrix(expand.grid(samples,samples))
combs<-unique(t(parApply(cl=cl, combs, 1, sort)))
expand.grid
很慢,sort
很慢等等。顺便说一下,我遇到了同样的问题(计算矩阵中所有列的所有成对乘积)。您可以在MESS
包中以pairwise_combination_indices
的身份访问该函数(并且您需要github 版本):
devtools::install_github("ekstroem/MESS")
现在看看这个速度增益。 f()
对应你上面的三行
microbenchmark::microbenchmark(f(100), MESS::pairwise_combination_indices(100, self=TRUE))
Unit: microseconds
expr min lq
f(100) 355670.517 386745.3550
MESS::pairwise_combination_indices(100, self = TRUE) 31.006 44.3855
mean median uq max neval cld
414465.6852 409732.726 427356.848 575404.135 100 b
85.7078 65.962 84.804 679.408 100 a
现在您需要计算 265 列的索引矩阵,而不仅仅是 100 列,因此速度增益应该更大。没有多少核心可以与之竞争,所以用
替换你的三行combs <- MESS::pairwise_combination_indices(ncols(input_m), self=TRUE)
第 2 步
你的最后一个循环应该是矢量化的,你可以逃脱(未经测试)
res_m[cbind(sim_m[k,1], sim_m[k,2])] = sim_m[k,3]
res_m[cbind(sim_m[k,2], sim_m[k,1])] = sim_m[k,3]
试试这些,看看是否有帮助?
加权 Jaccard 相似度顺便说一句,所有对都可能在 Rcpp 中非常快速地计算出来。
【讨论】:
以上是关于提高在大型矩阵中计算加权 Jaccard 的性能的主要内容,如果未能解决你的问题,请参考以下文章
MATLAB计算数据各种距离矩阵(欧式距离加权欧式距离...)