MPSC 队列:竞争条件

Posted

技术标签:

【中文标题】MPSC 队列:竞争条件【英文标题】:MPSC Queue: Race Condition 【发布时间】:2019-07-04 11:10:27 【问题描述】:

我正在尝试基于this one written in C by Dmitry Vyukov 实现一个无锁多生产者单消费者队列。

到目前为止,我编写的单个测试几乎可以正常工作。但是消费者通常会错过一个项目,要么是第一个,要么是第二个。有时,消费者会错过大约一半的输入。

就像现在一样,它不是无锁的。每次使用 new 运算符时它都会锁定,但我希望在使用分配器之前让它工作并编写一些更详尽的测试。

// src/MpscQueue.hpp

#pragma once

#include <memory>
#include <atomic>
#include <optional>

/**
 * Adapted from http://www.1024cores.net/home/lock-free-algorithms/queues/intrusive-mpsc-node-based-queue
 * @tparam T
 */
template< typename T >
class MpscQueue 
public:
    MpscQueue() 
        stub.next.store( nullptr );
        head.store( &stub );
        tail = &stub;
    

    void push( const T& t ) 
        emplace( t );
    

    void push( T&& t ) 
        emplace( std::move( t ));
    

    template< typename ... Args >
    void emplace( Args...args ) 
        auto node = new Node std::make_unique<T>( std::forward<Args>( args )... ), nullptr ;
        push( node );
    

    /**
     * Returns an item from the queue and returns a unique pointer to it.
     *
     * If the queue is empty returns a unique pointer set to nullptr
     *
     * @return A unique ptr to the popped item
     */
    std::unique_ptr<T> pop() 
        Node* tailCopy = tail;
        Node* next     = tailCopy->next.load();
        auto finalize = [ & ]() 
            tail = next;
            std::unique_ptr<Node> p( tailCopy ); // free the node memory after we return
            return std::move( tail->value );
        ;

        if ( tailCopy == &stub ) 
            if ( next == nullptr ) return nullptr;
            tail     = next;
            tailCopy = next;
            next     = next->next;
        

        if ( next ) return std::move( finalize());

        if ( tail != head.load()) return nullptr;

        push( &stub );
        next = tailCopy->next;

        return next ? std::move( finalize()) : nullptr;
    

private:
    struct Node 
        std::unique_ptr<T> value;
        std::atomic<Node*> next;
    ;

    void push( Node* node ) 
        Node* prev = head.exchange( node );
        prev->next = node;
    

    Node               stub;
    std::atomic<Node*> head;
    Node* tail;
;

// test/main.cpp

#pragma clang diagnostic push
#pragma ide diagnostic ignored "OCUnusedMacroInspection"
#define BOOST_TEST_MODULE test_module
#pragma clang diagnostic pop

#include <boost/test/unit_test.hpp>

// test/utils.hpp
#pragma once

#include <vector>

template< class T >
void removeFromBothIfIdentical( std::vector<T>& a, std::vector<T>& b ) 
    size_t i = 0;
    size_t j = 0;
    while ( i < a.size() && j < b.size()) 
        if ( a[ i ] == b[ j ] ) 
            a.erase( a.begin() + i );
            b.erase( b.begin() + j );
        
        else if ( a[ i ] < b[ j ] ) ++i;
        else if ( a[ i ] > b[ j ] ) ++j;
    


namespace std 
    template< typename T >
    std::ostream& operator<<( std::ostream& ostream, const std::vector<T>& container ) 
        if ( container.empty())
            return ostream << "[]";
        ostream << "[";
        std::string_view separator;
        for ( const auto& item: container ) 
            ostream << item << separator;
            separator = ", ";
        
        return ostream << "]";
    


template< class T >
std::vector<T> extractDuplicates( std::vector<T>& container ) 
    auto           iter = std::unique( container.begin(), container.end());
    std::vector<T> duplicates;
    std::move( iter, container.end(), back_inserter( duplicates ));
    return duplicates;


#define CHECK_EMPTY( container, message ) \
BOOST_CHECK_MESSAGE( (container).empty(), (message) << ": " << (container) )

// test/MpscQueue.cpp
#pragma ide diagnostic ignored "cert-err58-cpp"

#include <thread>
#include <numeric>
#include <boost/test/unit_test.hpp>
#include "../src/MpscQueue.hpp"
#include "utils.hpp"

using std::thread;
using std::vector;
using std::back_inserter;

BOOST_AUTO_TEST_SUITE( MpscQueueTestSuite )

    BOOST_AUTO_TEST_CASE( two_producers ) 
        constexpr int  until = 1000;
        MpscQueue<int> queue;

        thread producerEven( [ & ]() 
            for ( int i = 0; i < until; i += 2 )
                queue.push( i );
         );

        thread producerOdd( [ & ]() 
            for ( int i = 1; i < until; i += 2 )
                queue.push( i );
         );

        vector<int> actual;

        thread consumer( [ & ]() 
            using namespace std::chrono_literals;
            std::this_thread::sleep_for( 2ms );
            while ( auto n = queue.pop())
                actual.push_back( *n );
         );

        producerEven.join();
        producerOdd.join();
        consumer.join();

        vector<int> expected( until );
        std::iota( expected.begin(), expected.end(), 0 );

        std::sort( actual.begin(), actual.end());

        vector<int> duplicates = extractDuplicates( actual );
        removeFromBothIfIdentical( expected, actual );

        CHECK_EMPTY( duplicates, "Duplicate items" );
        CHECK_EMPTY( expected, "Missing items" );
        CHECK_EMPTY( actual, "Extra items" );
    

BOOST_AUTO_TEST_SUITE_END()

【问题讨论】:

您在哪个处理器架构上运行测试? @SegFault,i64。特别是 Intel(R) Core(TM) i5-7500 CPU @ 3.40GHz 你的机器测试通过了吗? 【参考方案1】:

下面我的多生产者、单消费者示例是用 Ada 编写的。我将此作为虚拟“伪代码”的来源供您考虑。该示例包含三个文件。

该示例实现了一个简单的数据记录器,其中包含多个生产者、一个共享缓冲区和一个记录生产者生成的字符串的消费者。

第一个文件是共享缓冲区的包规范。 Ada 包规范定义了包中定义的实体的 API。在这种情况下,实体是一个受保护的缓冲区和一个停止记录器的过程。

-----------------------------------------------------------------------
-- Asynchronous Data Logger
-----------------------------------------------------------------------
with Ada.Strings.Unbounded; use Ada.Strings.Unbounded;

package Async_Logger is
   type Queue_Index is mod 256;
   type Queue_T is array (Queue_Index) of Unbounded_String;

   protected Buffer is
      entry Put (Log_Entry : in String);
      entry Get (Stamped_Entry : out Unbounded_String);
   private
      Queue   : Queue_T;
      P_Index : Queue_Index := 0;
      G_Index : Queue_Index := 0;
      Count   : Natural     := 0;
   end Buffer;

   procedure Stop_Logging;

end Async_Logger;

受保护缓冲区中的条目允许任务(即线程)写入缓冲区并从缓冲区读取。这些条目会自动执行所有必要的缓冲区锁定控制。

缓冲区代码和 Stop_Logging 过程的实现在包体中实现。记录日志的消费者也在任务主体中实现,使消费者对生产线程不可见。

with Ada.Calendar;            use Ada.Calendar;
with Ada.Calendar.Formatting; use Ada.Calendar.Formatting;
with Ada.Text_IO;             use Ada.Text_IO;

package body Async_Logger is

   ------------
   -- Buffer --
   ------------

   protected body Buffer is

      ---------
      -- Put --
      ---------

      entry Put (Log_Entry : in String) when Count < Queue_Index'Modulus is
         T_Stamp : Time             := Clock;
         Value   : Unbounded_String :=
           To_Unbounded_String
             (Image (Date => T_Stamp, Include_Time_Fraction => True) & " : " &
              Log_Entry);
      begin
         Queue (P_Index) := Value;
         P_Index         := P_Index + 1;
         Count           := Count + 1;
      end Put;

      ---------
      -- Get --
      ---------

      entry Get (Stamped_Entry : out Unbounded_String) when Count > 0 is
      begin
         Stamped_Entry := Queue (G_Index);
         G_Index       := G_Index + 1;
         Count         := Count - 1;
      end Get;

   end Buffer;

   task Logger is
      entry Stop;
   end Logger;

   task body Logger is
      Phrase : Unbounded_String;
   begin
      loop
         select
            accept Stop;
            exit;
         else
            select
               Buffer.Get (Phrase);
               Put_Line (To_String (Phrase));
            or
               delay 0.01;
            end select;
         end select;
      end loop;

   end Logger;

   procedure Stop_Logging is
   begin
      Logger.Stop;
   end Stop_Logging;

end Async_Logger;

Put 条目有一个保护条件,允许该条目仅在缓冲区未满时执行。 Get 条目有一个保护条件,允许该条目仅在缓冲区为空时执行。

名为 Logger 的任务是消费者任务。它一直运行到它的 Stop 条目被调用为止。

Stop_Logging 过程调用 Logger 的 Stop 条目。

第三个文件是用于测试 Async_Logger 包的“主”过程。该文件创建了两个生产者,P1 和 P2。这些生产者每人向 Buffer 写入 10 条消息,然后退出。

with Async_Logger; use Async_Logger;

procedure Async_Test is
   task P1;
   task P2;

   task body P1 is
   begin
      for I in 1..10 loop
         Buffer.Put(I'Image);
         delay 0.01;
      end loop;
   end P1;

   task body P2 is
      Num : Float := 0.0;
   begin
      for I in 1..10 loop
         Buffer.Put(Num'Image);
         Num := Num + 1.0;
         delay 0.01;
      end loop;
   end P2;

begin
   delay 0.2;
   Stop_Logging;
end Async_Test;

Async_Test 过程只需等待 0.2 秒,然后调用 Stop_Logging。

运行这个程序的输出是:

2019-02-11 18:35:01.83 :  1
2019-02-11 18:35:01.83 :  0.00000E+00
2019-02-11 18:35:01.85 :  1.00000E+00
2019-02-11 18:35:01.85 :  2
2019-02-11 18:35:01.87 :  3
2019-02-11 18:35:01.87 :  2.00000E+00
2019-02-11 18:35:01.88 :  3.00000E+00
2019-02-11 18:35:01.88 :  4
2019-02-11 18:35:01.90 :  5
2019-02-11 18:35:01.90 :  4.00000E+00
2019-02-11 18:35:01.92 :  6
2019-02-11 18:35:01.92 :  5.00000E+00
2019-02-11 18:35:01.93 :  6.00000E+00
2019-02-11 18:35:01.93 :  7
2019-02-11 18:35:01.95 :  7.00000E+00
2019-02-11 18:35:01.95 :  8
2019-02-11 18:35:01.96 :  8.00000E+00
2019-02-11 18:35:01.96 :  9
2019-02-11 18:35:01.98 :  10
2019-02-11 18:35:01.98 :  9.00000E+00

【讨论】:

我以前从未使用过 ada,我不太了解它如何同步所有内容的细节。队列是线程安全的结构吗?是阻塞吗?另外,我的目标是永远不要阻塞,除非它正在获取内存以创建新节点。 Ada 保护类型和受保护对象是线程安全的。每个条目都会自动处理锁定和解锁。每个条目上的保护条件也会导致调用任务暂停,直到保护条件评估为 True。在多生产者单消费者模式中需要阻塞,因为只有当没有其他生产者写入共享缓冲区时,每个生产者才必须写入共享缓冲区,并且当生产者写入缓冲区时,消费者不能从共享缓冲区中读取。此类行为会造成竞争条件和损坏的缓冲区状态。 受保护条目中的代码可以与 C 或 C++ 中的临界区进行比较。所有这些操作都必须以防止竞争条件的方式执行。在我上面的示例中,缓冲区包含一个队列以及 P_Index、C_Index 和 Count。这些都是状态变量,必须与缓冲区上的每个操作保持一致。如果两个生产者修改同一个队列元素,结果是数据损坏或丢失。同样,两个生产者试图同时更新 P_Index 和 Count 会产生不可预知的结果。【参考方案2】:

您的推送功能缺少该行:

node->next = nullptr;

在顶部。

查看我的实现以及 cmets 中的大量分析, 这里:https://github.com/CarloWood/ai-utils/blob/master/threading/MpscQueue.h

【讨论】:

链接已损坏。 谢谢!我最近将线程相关的实用程序移到了另一个 git 子模块;我现在在帖子中修复了链接。

以上是关于MPSC 队列:竞争条件的主要内容,如果未能解决你的问题,请参考以下文章

秒懂:JCTool 的 Mpsc 高性能无锁队列 (史上最全+10W字长文)

在事件驱动的嵌入式系统中使用事件队列避免竞争条件

基于条件变量的消息队列

JUC 并发类概览

条件竞争漏洞

CreateTimerQueueTimer 回调和竞争条件