为啥AVL排序不到位?
Posted
技术标签:
【中文标题】为啥AVL排序不到位?【英文标题】:Why AVL sort is not in place?为什么AVL排序不到位? 【发布时间】:2022-01-14 00:42:07 【问题描述】:最近有人告诉我,AVL 排序没有到位。谁能解释一下?从下面的代码中,我不确定在排序时我在哪里分配了额外的空间。在这段代码中,当构建数据结构或插入元素时,元素按其键排序。
声明的参考:他们正在使用此声明来激发“二进制堆”
[1].https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-spring-2020/lecture-notes/MIT6_006S20_r08.pdf
代码参考:
[2]。 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-spring-2020/lecture-notes/MIT6_006S20_r06.pdf
[3]。 https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-spring-2020/lecture-notes/MIT6_006S20_r07.pdf
def height(A):
if A: return A.height
else: return -1
class Binary_Node:
def __init__(self, x):
self.item = x
self.parent = None
self.left = None
self.right = None
self.subtree_update()
def subtree_update(self):
self.height = 1 + max(height(self.left), height(self.right))
def subtree_iter(self):
if self.left: yield from self.left.subtree_iter()
yield self
if self.right: yield from self.right.subtree_iter()
def subtree_first(self):
if self.left: return self.left.subtree_first()
else: return self
def subtree_last(self):
if self.right: return self.right.subtree_last()
else: return self
def sucessor(self):
if self.right: return self.right.subtree_first()
while self.parent and (self is self.parent.right): #A is parent's left child and A's parent exists
self = self.parent
return self.parent
def predecessor(self):
if self.left: return self.left.subtree_last()
while self.parent and (self is self.parent.left):
self = self.parent
return self.parent
def subtree_insert_before(self, A):
if self.left:
self = self.left.subtree_last()
self.right, A.parent = A, self
else:
self.left, A.parent = A, self
self.maintain()
def subtree_insert_after(self, A):
if self.right:
self = self.right.subtree_first()
self.left, A.parent = A, self
else:
self.right, A.parent = A, self
self.maintain()
def delete(self):
if not self.left and not self.right: # when self is leaf
if self.parent:
A = self.parent
if A.left is self: A.left = None
else: A.right = None
self.parent = None
if self.left:
self.item, self.left.subtree_last().item = self.left.subtree_last().item, self.item
self.left.subtree_last().delete()
else:
self.item, self.right.subtree_first().item = self.right.subtree_first().item, self.item
self.right.subtree_last().delete()
def subtree_delete(self):
if self.left or self.right:
if self.left: B = self.predecessor()
else: B = self.sucessor()
self.item, B.item = B.item, self.item
return B.subtree_delete()
if self.parent:
if self.parent.left is self: self.parent.left = None
else: self.parent.right = None
self.parent.maintain()
return self
def subtree_rotate_right(self):
assert self.left
B, E = self.left, self.right
A, C = B.left, B.right
B, self = self, B
self.item, B.item = B.item, self.item
B.left, B.right = A, self
self.left, self.right = C, E
if A: A.parent = B
if E: E.parent = self
B.subtree_update()
self.subtree_update()
def subtree_rotate_left(self):
assert self.right
A, D = self.left, self.right
C, E = D.left, D.right
self, D = D, self
self.item, D.item = D.item, self.item
self.left, self.right = A, C
D.left, D.right = self, E
if A: A.parent = self
if E: E.parent = D
self.subtree_update()
D.subtree_update()
def skew(self):
return height(self.right) - height(self.left)
def rebalance(self):
if self.skew() == 2:
if self.right.skew() < 0:
self.right.subtree_rotate_right()
self.subtree_rotate_left()
elif self.skew() == -2:
if self.left.skew() > 0:
self.left.subtree_rotate_left()
self.subtree_rotate_right()
def maintain(self):
self.rebalance()
self.subtree_update()
if self.parent: self.parent.maintain()
class Binary_Tree:
def __init__(self, Node_Type = Binary_Node):
self.root = None
self.size = 0
self.Node_Type = Node_Type
def __len__(self): return self.size
def __iter__(self):
if self.root:
for A in self.root.subtree_iter():
yield A.item
def build(self, X):
A = [x for x in X]
def build_subtree(A, i, j):
c = (i + j) // 2
root = self.Node_Type(A[c])
if i < c:
root.left = build_subtree(A, i, c - 1)
root.left.parent = root
if j > c:
root.right = build_subtree(A, c + 1, j)
root.right.parent = root
return root
self.root = build_subtree(A, 0, len(A) - 1)
class BST_Node(Binary_Node):
def subtree_find(self, k):
if self.item.key > k:
if self.left: self.left.subtree_find(k)
elif self.item.key < k:
if self.right: self.right.subtree_find(k)
else: return self
return None
def subtree_find_next(self, k):
if self.item.key <= k:
if self.right: return self.right.subtree_find_next(k)
else: return None
elif self.item.key > k:
if self.left: return self.left.subtree_find_next(k)
else: return self
return self
def subtree_find_prev(self, k):
if self.item.key >= k:
if self.left: return self.left.subtree_find_prev(k)
else: return None
elif self.item.key < k:
if self.right: return self.right.subtree_find_prev(k)
else: return self
return self
def subtree_insert(self, B):
if B.item.key < self.item.key:
if self.left: self.left.subtree_insert(B)
else: self.subtree_insert_before(B)
elif B.item.key > self.item.key:
if self.right: self.right.subtree_insert(B)
else: self.subtree_insert_after(B)
else:
self.item = B.item
class Set_Binary_Tree(Binary_Tree):
def __init__(self): super().__init__(BST_Node)
def iter_order(self): yield from self
def build(self, X):
for x in X: self.insert(x)
def find_min(self):
if self.root: return self.root.subtree_first()
def find_max(self):
if self.root: return self.root.subtree_last()
def find(self, k):
if self.root:
node = self.root.subtree_find(k)
if node:
return node.item
def find_next(self, k):
if self.root:
node = self.root.subtree_find_next(k)
if node:
return node.item
def find_prev(self, k):
if self.root:
node = self.root.subtree_find_prev(k)
if node:
return node.item
def insert(self, x):
new = self.Node_Type(x)
if self.root:
self.root.subtree_insert(new)
if new.parent is None: return False
else:
self.root = new
self.size += 1
return True
def delete(self, k):
assert self.root
node = self.root.subtree_find(k)
assert node
ext = node.subtree_delete()
if ext.parent is None: self.root = None
self.size -= 1
return ext.item
【问题讨论】:
请引用您的出处。 请为这两个声明添加参考。谁说它在恒定空间中运行,谁说不是。 请简述 AVL 排序 的工作原理,以及它如何使用存储空间(欢迎超链接参考和详细信息)。我好像记得 AVL trees。 如果你相信 google,AVL 排序从一个未排序的数组开始。然后从数组的元素构建一个 AVL 树。最后,执行 AVL 树的中序遍历,将元素放回数组中。就执行时间而言,这很可能是有史以来最糟糕的 O(NlogN) 排序。开发时间也很繁重,除非您已经拥有 AVL 代码。 @user3386109 你有它。您构建了一个 AVL 树。那不是现场的。 “就地”是指“在阵列内部”。但是 AVL 树不在“数组内部”。 【参考方案1】:Wikipedia 定义了一个就地算法如下:
在计算机科学中,就地算法是一种不使用辅助数据结构来转换输入的算法。但是,辅助变量允许有少量的额外存储空间。当算法执行时,输入通常被输出覆盖。就地算法仅通过替换或交换元素来更新其输入序列。
因此,称为“就地”的算法的属性之一是它不会将所有输入值复制到新分配的数据结构中。如果一个算法创建了一个二叉搜索树(如 AVL),并为其创建了填充有输入值的节点对象,则上述定义不能就地调用它,即使在处理结束时值被复制回输入数组。
作为比较,堆排序不必创建一个新的数据结构,因为输入数组可用于将其值重新组织到堆中。它只需要交换该数组中的值即可对其进行排序。因此,它是一种就地算法。
【讨论】:
以上是关于为啥AVL排序不到位?的主要内容,如果未能解决你的问题,请参考以下文章