如何使用一组重叠最小的范围覆盖一个范围?
Posted
技术标签:
【中文标题】如何使用一组重叠最小的范围覆盖一个范围?【英文标题】:How to cover a range using a set of ranges with minimal overlap? 【发布时间】:2021-09-03 19:04:42 【问题描述】:假设有 n 个任务和一组 m 人,每个人可以完成一系列任务(Ti 到 Tj)。完成每项任务的成本是 k* no。完成该任务的人。如果可能的话,至少完成一次所有任务的最低成本是多少。 我觉得这是一个动态规划问题,但我无法达到最优方程。有人可以帮我找到正确的方程式或上面的代码块。为了更好地理解,我附上了几个例子。
n:4
m:3
Range of tasks for m people: (3,4);(1,2);(2,3)
Answer: m1 & m2 can complete all 4 tasks so cost is 4.
Ex2:
n:4
m:2
Range of tasks for m people: (1,3);(2,4)
Answer: m1 & m2 are both required to complete all 4 tasks so cost is 6.
【问题讨论】:
什么是k
?根据示例,它似乎等于 1。
'1' 如果一个任务最多完成 k 次,那么它贡献的值就是 k。
所以,在这种情况下,成本是k = number of people...
,没有*
,否则我错过了什么。
no k 始终为 1 ,即 ONE 人完成一项任务的成本为 ONE,如果多人执行,则为该次数。
您可以将此问题表述为“如何使用一组重叠最少的范围来覆盖一个范围?”
【参考方案1】:
这里是贪心算法 - 总是最好的起点。
allocate all teams
IF not all sections covered
output -1
stop
mark all teams non-critical
flag_improved = true
WHILE( flag_improved == true )
flag_improved = false
find most expensive section
find most expensive non-critical team on most expensive section
IF team found that can be removed without leaving a section uncovered
remove team
flag_improved = true
ELSE
mark team critical
output cost - sum coverage of remaining teams
这是实现此算法的 C++ 应用程序的主要功能
main()
std::vector<cTeam> teams;
int bridge_section_count;
Input( bridge_section_count, teams);
// allocate all teams
for (int s = 0; s < bridge_section_count; s++)
Bridge.insert(std::pair(s, std::vector<cTeam>(0)));
for (auto &t : teams)
for (int s = t.myRange.first; s <= t.myRange.second; s++)
Bridge[s].push_back(t);
// check every section has at least one team allocated
if (!IsCovered())
std::cout << "-1\n";
exit(1);
// loop while improvements are being found
bool flag_improved = true;
while (flag_improved)
flag_improved = false;
auto most_expensive_section = find_most_expensive_section();
while (1)
// loop over teams allocated to most expensive section
std::vector<cTeam>::iterator most_expensive_team;
if (!find_most_expensive_non_critical_team(
most_expensive_team,
most_expensive_section))
break;
// check can team be removed without leaving section uncovered
if (testRemoval(*most_expensive_team))
// remove team
doRemoval(*most_expensive_team);
flag_improved = true;
break;
else
// this team is critical, it cannot be removed
most_expensive_team->myCritical = true;
printResult();
完整的应用代码在https://gist.github.com/JamesBremner/ada6210a8517671abd45e882c97d526d
【讨论】:
以上是关于如何使用一组重叠最小的范围覆盖一个范围?的主要内容,如果未能解决你的问题,请参考以下文章