迭代数据框并根据一列的值在具有前一行值的新列中执行操作
Posted
技术标签:
【中文标题】迭代数据框并根据一列的值在具有前一行值的新列中执行操作【英文标题】:iterrate over dataframe and based on the value of one column do operations in a new column with previous row's value 【发布时间】:2021-11-23 18:01:10 【问题描述】:我对他们的行为有少量的股票价格。我想计算拆分后股票的调整所有权数量(即,如果您拥有 1000 股并且股票有 2-1 拆分,那么您的所有权变为 2000 股)。我想遍历“Stock Splits”列,如果值!= 0,则将“所有权”与“Stock Splits”相乘,否则保持拆分前的最后一个数量。我尝试了很多方法,但我不确定我哪里出错了 - 我确实认为逻辑是错误的,但不知道如何解决它。
import yfinance as yf
aapl = yf.Ticker("AAPL")
hist = aapl.history(start="2014-06-01")
hist["ownership"] = 1000
Open High Low Close Volume Dividends Stock Splits ownership
Date
2014-06-02 20.338966 20.366877 19.971301 20.168608 369350800 0.0 0.0 1000
2014-06-03 20.162511 20.492319 20.155774 20.453819 292709200 0.0 0.0 1000
2014-06-04 20.450610 20.785872 20.407940 20.687378 335482000 0.0 0.0 1000
2014-06-05 20.731655 20.833356 20.616479 20.768549 303805600 0.0 0.0 1000
2014-06-06 20.850357 20.893990 20.676150 20.711439 349938400 0.0 0.0 1000
我的代码如下:
hist.loc[hist['Stock Splits']==0,'ownerAdj'] = hist['ownership'].shift(1)
hist.loc[hist['Stock Splits']!=0,'ownerAdj'] = hist['ownership'].shift(1) * hist['Stock Splits']
但是我并不总是得到正确的数字,如下例所示,在 2014 年 6 月 9 日 aapl 已拆分(7 比 1),因此从 2014 年 6 月 9 日到下一个日期的结果应该是 7000另一个拆分是 2020-08-31,但拆分后我要回 1000
Date Open High Low Close Volume Dividends Stock Splits ownership ownerAdj
0 2014-06-02 20.338964 20.366875 19.971299 20.168606 369350800 0.0 0.0 1000 NaN
1 2014-06-03 20.162515 20.492323 20.155778 20.453823 292709200 0.0 0.0 1000 1000.0
2 2014-06-04 20.450608 20.785870 20.407938 20.687376 335482000 0.0 0.0 1000 1000.0
3 2014-06-05 20.731645 20.833346 20.616470 20.768539 303805600 0.0 0.0 1000 1000.0
4 2014-06-06 20.850359 20.893992 20.676152 20.711441 349938400 0.0 0.0 1000 1000.0
5 2014-06-09 20.818268 21.083269 20.604921 21.042845 301660000 0.0 7.0 1000 7000.0
6 2014-06-10 21.274162 21.346027 21.013652 21.166365 251108000 0.0 0.0 1000 1000.0
7 2014-06-11 21.139424 21.280908 20.991204 21.078789 182724000 0.0 0.0 1000 1000.0
我尝试运行循环,但出现错误:
for i, row in hist.iterrows():
if row["Stock Splits"] == 0:
row["ownerAdj"] = row["ownership"].shift(1)
elif row["Stock Splits"] != 0:
row["ownerAdj"] = row["ownership"].shift(1) * row["Stock Splits"]
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-51-2d94c5e86953> in <module>
1 for i, row in hist.iterrows():
2 if row["Stock Splits"] == 0:
----> 3 row["adjust2"] = row["ownership"].shift(1)
4 elif row["Stock Splits"] != 0:
5 row["adjust2"] = row["ownership"].shift(1) * row["Stock Splits"]
AttributeError: 'numpy.float64' object has no attribute 'shift'
【问题讨论】:
【参考方案1】:你可以做这个矢量化
hist['ownership'] = 1000 * np.cumprod(np.maximum(hist["Stock Splits"], 1))
部分:
# No split can be expressed as a 1.0 split (You get 1 for every 1).
# Assumes you don't have negative splits.
adj_split = np.maximum(hist["Stock Splits"], 1)
# The multiple of the initial ownership at each day compared to the first.
cumsplit = np.cumprod(adj_split)
initial_ownership = 1000
hist["ownership"] = cumsplit * initial_ownership
【讨论】:
感谢您的回复。运行 hist['ownership2'] = 1000 * np.cumprod(np.maximum(hist["Stock Splits"],1) 时出现 EOF 错误 对不起,忘记了结束括号:)以上是关于迭代数据框并根据一列的值在具有前一行值的新列中执行操作的主要内容,如果未能解决你的问题,请参考以下文章
如何访问 pandas 数据框列中的字典元素并对其进行迭代以创建填充有各自值的新列?