如何在 Azure ML 服务计算集群上并行工作?
Posted
技术标签:
【中文标题】如何在 Azure ML 服务计算集群上并行工作?【英文标题】:How to parallelize work on an Azure ML Service Compute cluster? 【发布时间】:2019-12-22 21:36:54 【问题描述】:我能够使用计算集群向 Azure ML 服务提交作业。它运行良好,自动缩放与自定义环境的良好灵活性相结合似乎正是我所需要的。然而,到目前为止,所有这些作业似乎只使用集群的一个计算节点。理想情况下,我希望使用多个节点进行计算,但我看到的所有方法都依赖于与 azure ML 服务的深度集成。
我的模特案例有点不典型。从之前的实验中,我确定了一组运行良好的架构(预处理步骤的管道 + Scikit-learn 中的估计器)。 使用RandomizedSearchCV 可以相当快(几分钟)对这些估计器之一进行超参数调整。因此,并行化这一步似乎不太有效。
现在我想调整和训练整个架构列表。 这应该很容易并行化,因为所有架构都可以独立训练。
理想情况下,我想要类似(伪代码)
tuned = AzurePool.map(tune_model, [model1, model2,...])
但是,我找不到任何有关如何使用 Azure ML 计算集群实现此目的的资源。 一个可接受的替代方案是以即插即用替代 sklearn 的 CV 调整方法的形式出现,类似于 dask 或 spark 中提供的方法。
【问题讨论】:
【参考方案1】:您可以通过多种方式使用 AzureML 解决此问题。最简单的方法是使用 AzureML Python SDK 启动一些作业(底层示例取自 here)
from azureml.train.sklearn import SKLearn
runs = []
for kernel in ['linear', 'rbf', 'poly', 'sigmoid']:
for penalty in [0.5, 1, 1.5]:
print ('submitting run for kernel', kernel, 'penalty', penalty)
script_params =
'--kernel': kernel,
'--penalty': penalty,
estimator = SKLearn(source_directory=project_folder,
script_params=script_params,
compute_target=compute_target,
entry_script='train_iris.py',
pip_packages=['joblib==0.13.2'])
runs.append(experiment.submit(estimator))
以上要求您将您的训练与所需的 python 包一起放入一个脚本(或文件夹中的一组脚本)中。上述估计器是使用 Scikit Learn 的便捷包装器。 Tensorflow、Pytorch、Chainer 和一个通用的 (azureml.train.estimator.Estimator
) 也有估算器——它们都在它们使用的 Python 包和基础 docker 上有所不同。
如果您实际上是在调整参数,第二个选项是像这样使用 HyperDrive 服务(使用与上面相同的 SKLearn
Estimator):
from azureml.train.sklearn import SKLearn
from azureml.train.hyperdrive.runconfig import HyperDriveConfig
from azureml.train.hyperdrive.sampling import RandomParameterSampling
from azureml.train.hyperdrive.run import PrimaryMetricGoal
from azureml.train.hyperdrive.parameter_expressions import choice
estimator = SKLearn(source_directory=project_folder,
script_params=script_params,
compute_target=compute_target,
entry_script='train_iris.py',
pip_packages=['joblib==0.13.2'])
param_sampling = RandomParameterSampling(
"--kernel": choice('linear', 'rbf', 'poly', 'sigmoid'),
"--penalty": choice(0.5, 1, 1.5)
)
hyperdrive_run_config = HyperDriveConfig(estimator=estimator,
hyperparameter_sampling=param_sampling,
primary_metric_name='Accuracy',
primary_metric_goal=PrimaryMetricGoal.MAXIMIZE,
max_total_runs=12,
max_concurrent_runs=4)
hyperdrive_run = experiment.submit(hyperdrive_run_config)
或者您可以使用 DASK 来安排您提到的工作。以下是如何在 AzureML Compute Cluster 上设置 DASK 的示例,以便您可以对其进行交互式工作:https://github.com/danielsc/azureml-and-dask
【讨论】:
【参考方案2】:还有一个带有 worker_count_per_node 设置的ParallelTaskConfiguration Class,默认为 1。
【讨论】:
以上是关于如何在 Azure ML 服务计算集群上并行工作?的主要内容,如果未能解决你的问题,请参考以下文章
k8s集群Job负载支持多个Pod可靠并发,如何权衡利弊选择适合的并行计算模式?
在群集上运行网格搜索 CV 时 Azure ML Pipeline 失败