(OpenCV Stitching) 如何使用 OpenCV Stitcher 类获得更好的性能?
Posted
技术标签:
【中文标题】(OpenCV Stitching) 如何使用 OpenCV Stitcher 类获得更好的性能?【英文标题】:(OpenCV Stitching) How to get better performance using OpenCV Stitcher class? 【发布时间】:2016-02-17 17:36:43 【问题描述】:我在使用 Stitcher 类时遇到了一些问题。
首先,我使用 ORB 特征查找器,因为它比 SURF 快。 但它仍然很慢。
第二,Stitcher类准确率太低。
第三,如何使用 Stitcher 类获得更高的性能?
另外,如何在两张图片之间捕捉方向?
这是我的代码。
谢谢。
#include "opencv2/core/core.hpp"
#include "opencv2/highgui/highgui.hpp"
#include "opencv2/stitching.hpp"
#include "opencv2/features2d.hpp"
using namespace cv;
using namespace std;
void overlayImage(const cv::Mat &background, const cv::Mat &foreground, cv::Mat &output, cv::Point2i location);
int main(int argc, char* argv[])
Mat first;
Mat second;
Mat m_first;
Mat m_second;
vector<Mat> images;
// vector<Mat> re_images;
Mat panorama;
Mat result;
unsigned long t;
t = getTickCount();
first = imread(argv[1], CV_LOAD_IMAGE_COLOR);
second = imread(argv[2], CV_LOAD_IMAGE_COLOR);
//Mat m_first = Mat::zeros( first.size(), first.type() );
//Mat m_second = Mat::zeros( second.size(), second.type() );
/*
for( int y = 0; y < first.rows; y++ )
for( int x = 0; x < first.cols; x++ )
for( int c = 0; c < 3; c++ )
m_first.at<Vec3b>(y,x)[c] = saturate_cast<uchar>( 1.2*( first.at<Vec3b>(y,x)[c] ) + 20 );
for( int y = 0; y < second.rows; y++ )
for( int x = 0; x < second.cols; x++ )
for( int c = 0; c < 3; c++ )
m_second.at<Vec3b>(y,x)[c] =
saturate_cast<uchar>( 1.2*( second.at<Vec3b>(y,x)[c] ) + 20 );
*/
//imwrite("first.png", m_first);
//imwrite("second.png", m_second);
resize(first, m_first, Size(640, 480));
resize(second, m_second, Size(640, 480));
images.push_back(m_first);
images.push_back(m_second);
Stitcher stitcher = Stitcher::createDefault(false);
//Stitcher::Status status = stitcher.stitch(imgs, pano);
//stitcher.setWarper(new PlaneWarper());
stitcher.setWarper(new SphericalWarper());
// stitcher.setWarper(new CylindricalWarper());
stitcher.setFeaturesFinder(new detail::OrbFeaturesFinder(Size(3,1),1500));
// stitcher.setRegistrationResol(0.6);
// stitcher.setSeamEstimationResol(0.1);
// stitcher.setCompositingResol(0.5);
//stitcher.setPanoConfidenceThresh(1);
stitcher.setWaveCorrection(true);
stitcher.setWaveCorrectKind(detail::WAVE_CORRECT_HORIZ);
stitcher.setFeaturesMatcher(new detail::BestOf2NearestMatcher(false,0.3));
stitcher.setBundleAdjuster(new detail::BundleAdjusterRay());
stitcher.setBlender(new detail::MultiBandBlender());
stitcher.stitch(images, panorama);
printf("%.2lf sec \n", (getTickCount() - t) / getTickFrequency() );
Rect rect(panorama.cols / 2 - 320, panorama.rows / 2 - 240, 640, 480);
Mat subimage = panorama(rect);
Mat car = imread("car.png");
overlayImage(subimage, car, result, cv::Point(320 - (car.cols / 2), 240 - (car.rows / 2 )));
imshow("panorama", result);
// resize(panorama, result, Size(640, 480));
imwrite("result.jpg", result);
waitKey(0);
return 0;
void overlayImage(const cv::Mat &background, const cv::Mat &foreground, cv::Mat &output, cv::Point2i location)
background.copyTo(output);
// start at the row indicated by location, or at row 0 if location.y is negative.
for(int y = std::max(location.y , 0); y < background.rows; ++y)
int fY = y - location.y; // because of the translation
// we are done of we have processed all rows of the foreground image.
if(fY >= foreground.rows)
break;
// start at the column indicated by location,
// or at column 0 if location.x is negative.
for(int x = std::max(location.x, 0); x < background.cols; ++x)
int fX = x - location.x; // because of the translation.
// we are done with this row if the column is outside of the foreground image.
if(fX >= foreground.cols)
break;
// determine the opacity of the foregrond pixel, using its fourth (alpha) channel.
double opacity =
((double)foreground.data[fY * foreground.step + fX * foreground.channels() + 3])
/ 255.;
// and now combine the background and foreground pixel, using the opacity,
// but only if opacity > 0.
for(int c = 0; opacity > 0 && c < output.channels(); ++c)
unsigned char foregroundPx =
foreground.data[fY * foreground.step + fX * foreground.channels() + c];
unsigned char backgroundPx =
background.data[y * background.step + x * background.channels() + c];
output.data[y*output.step + output.channels()*x + c] =
backgroundPx * (1.-opacity) + foregroundPx * opacity;
【问题讨论】:
【参考方案1】:FAST 特征检测器比 SURF 和 ORB 更快。
此外,在 640*480 的图片中查找 1500 个特征需要太多时间。 300个功能还可以。所以你可以改用这段代码:
detail::OrbFeaturesFinder(Size(3,1),300));
Stitcher 类太慢了。我建议你尝试自己实现stitcher 类。尝试使用特征检测器、描述符,然后进行匹配,然后找到单应性,然后制作掩码,然后进行变形。
我不明白您的第三个问题,“我怎样才能在两个图像之间捕捉方向?”。你到底是什么意思?
【讨论】:
以上是关于(OpenCV Stitching) 如何使用 OpenCV Stitcher 类获得更好的性能?的主要内容,如果未能解决你的问题,请参考以下文章