关于熊猫代码的pyspark meandays计算

Posted

技术标签:

【中文标题】关于熊猫代码的pyspark meandays计算【英文标题】:pyspark meandays calculation with respect to pandas code 【发布时间】:2021-01-11 10:13:42 【问题描述】:

#Pandas 代码

temp = df_merge[['subscription_id', 'cancelleddate', 'subscriptionstartdate', 'termenddate']].drop_duplicates()
df_merge['mean_cancelled_sub_duration'] = (temp['cancelleddate']-temp['subscriptionstartdate']).dt.days.dropna().mean()/ 365
df_merge['mean_sub_duration'] = (temp['termenddate']-temp['subscriptionstartdate']).dt.days.dropna().mean()/365``

如何在 pyspark 中实现与 pandas 代码相同的逻辑,虽然我尝试在 pyspark 中这样做但它没有帮助我,我们删除了行并且计算错误:

名称中带有日期的列属于日期类型。

#Failed Pyspark 转换

    temp = df_merge.select('subscription_id', 'cancelleddate', 'subscriptionstartdate', 'termenddate').dropDuplicates()
    temp = temp.withColumn("cancelled_sub_duration", datediff(temp.cancelleddate,temp.subscriptionstartdate)).withColumn("sub_duration", datediff(temp.termenddate,temp.subscriptionstartdate))
    temp = temp.na.drop(subset=['cancelled_sub_duration','sub_duration'])
    spec3 = Window.partitionBy("subscription_id")
    temp = temp.withColumn('mean_cancelled_sub_duration',(mean("cancelled_sub_duration").over(spec3))/365).withColumn('mean_sub_duration',(mean("sub_duration").over(spec3))/365)
    temp = temp.select(col('subscription_id').alias('subsid'), col('mean_cancelled_sub_duration'), col('mean_sub_duration'))
    df_merge = df_merge.join(broadcast(temp), df_merge.subscription_id==temp.subsid,"left").drop(col('subsid'))

【问题讨论】:

【参考方案1】:

您好,请发布 pandas 代码的预期输出以及您从 pyspark 代码中得到的结果,以便我们评估数据集之间的差异。没有它,很难具体看出什么不起作用,什么是。

同时,我只是专门查看 pandas 代码并尝试在 pyspark 中为 like 点赞,这就是我想出的。

temp = temp \
.withColumn('mean_cancelled_sub_duration' avg(datediff('cancelledate', 'subscriptionstartdate')).over(spec3) / lit(365)) \
.withColumn('mean_sub_duration', avg(datediff('termenddate', 'subscriptionstartdate')).over(spec3) / lit(365))

【讨论】:

【参考方案2】:

首先,我刚刚创建了一个函数,可以将 pandas 数据帧平滑地转换为 spark 数据帧。

def equivalent_type(f):
 if f == 'datetime64[ns]': return DateType()
 elif f == 'int64': return LongType()
 elif f == 'int32': return IntegerType()
 elif f == 'uint8': return IntegerType()
 elif f == 'float64': return FloatType()
 else: return StringType()

def define_structure(string, format_type):
 try: typo = equivalent_type(format_type)
 except: typo = StringType()
 return StructField(string, typo)

def pandas_to_spark(pandas_df):
 columns = list(pandas_df.columns)
 types = list(pandas_df.dtypes)
 struct_list = []
 for column, typo in zip(columns, types):
   struct_list.append(define_structure(column, typo))
 p_schema = StructType(struct_list)
 return spark.createDataFrame(pandas_df, p_schema)

然后我使用 toPandas() 方法将 spark 数据帧转换为 pandas 数据帧

temp = df_merge.select('subscription_id', 'cancelleddate', 'subscriptionstartdate', 'termenddate').dropDuplicates()
temp = temp.toPandas()

temp['cancelleddate'] = pd.to_datetime(temp['cancelleddate'])
temp['subscriptionstartdate'] = pd.to_datetime(temp['subscriptionstartdate'])
temp['subscriptionstartdate'] = pd.to_datetime(temp['subscriptionstartdate'])

df_merge = df_merge.toPandas()
df_merge['mean_cancelled_sub_duration'] = (temp['cancelleddate']-temp['subscriptionstartdate']).dt.days.dropna().mean() / 365
df_merge['mean_sub_duration'] = (temp['termenddate']-temp['subscriptionstartdate']).dt.days.dropna().mean() / 365

df_merge = pandas_to_spark(df_merge)

我使用的是 Spark 2.3.0 版本,所以我必须确保我要转换为 pandas 数据帧的日期字段应该是时间戳,否则会引发错误。

这终于解决了我的问题,我得到了平均值(因为这不是一种聚合平均值或逐行平均值,你可以说它是列平均值。)

【讨论】:

以上是关于关于熊猫代码的pyspark meandays计算的主要内容,如果未能解决你的问题,请参考以下文章

pyspark使用熊猫读取csv,如何保留标题

在不使用熊猫的情况下将数据框转换为pyspark中的字典

为啥要在 PySpark 中导入熊猫?

熊猫 groupby.apply 到 pyspark

Spark中来自pyspark的熊猫[重复]

如何在 pyspark 中加入带有熊猫数据框的配置单元表?