将包含 BigInt 的 RDD 转换为 Spark Dataframe
Posted
技术标签:
【中文标题】将包含 BigInt 的 RDD 转换为 Spark Dataframe【英文标题】:converting RDD containing BigInt to Spark Dataframe 【发布时间】:2017-10-12 15:37:49 【问题描述】:您好,我正在使用 spark 1.6.3。我有一个 rdd,其中有一些 BigInt scala 类型。我将如何将其转换为 spark 数据框? 是否可以在创建数据框之前转换类型?
我的rdd:
Array[(BigInt, String, String, BigInt, BigInt, BigInt, BigInt, List[String])] = Array((14183197,Browse,3393626f-98e3-4973-8d38-6b2fb17454b5_27331247X28X6839X1506087469573,80161702,8702170626376335,59,527780275219,List(NavigationLevel, Session)), (14183197,Browse,3393626f-98e3-4973-8d38-6b2fb17454b5_27331247X28X6839X1506087469573,80161356,8702171157207449,72,527780278061,List(StartPlay, Action, Session)))
打印出来:
(14183197,Browse,3393626f-98e3-4973-8d38-6b2fb17454b5_27331247X28X6839X1506087469573,80161356,8702171157207449,72,527780278061,List(StartPlay, Action, Session))
(14183197,Browse,3393626f-98e3-4973-8d38-6b2fb17454b5_27331247X28X6839X1506087469573,80161702,8702170626376335,59,527780275219,List(NavigationLevel, Session))
我已经厌倦了创建模式对象;
val schema = StructType(Array(
StructField("trackId", LongType, true),
StructField("location", StringType, true),
StructField("listId", StringType, true),
StructField("videoId", LongType, true),
StructField("id", LongType, true),
StructField("sequence", LongType, true),
StructField("time", LongType, true),
StructField("type", ArrayType(StringType), true)
))
如果我尝试val df = sqlContext.createDataFrame(rdd, schema)
我会收到此错误
error: overloaded method value createDataFrame with alternatives:
(data: java.util.List[_],beanClass: Class[_])org.apache.spark.sql.DataFrame <and>
(rdd: org.apache.spark.api.java.JavaRDD[_],beanClass: Class[_])org.apache.spark.sql.DataFrame <and>
(rdd: org.apache.spark.rdd.RDD[_],beanClass: Class[_])org.apache.spark.sql.DataFrame <and>
(rows: java.util.List[org.apache.spark.sql.Row],schema: org.apache.spark.sql.types.StructType)org.apache.spark.sql.DataFrame <and>
(rowRDD: org.apache.spark.api.java.JavaRDD[org.apache.spark.sql.Row],schema: org.apache.spark.sql.types.StructType)org.apache.spark.sql.DataFrame <and>
(rowRDD: org.apache.spark.rdd.RDD[org.apache.spark.sql.Row],schema: org.apache.spark.sql.types.StructType)org.apache.spark.sql.DataFrame
cannot be applied to (org.apache.spark.rdd.RDD[(BigInt, String, String, BigInt, BigInt, BigInt, BigInt, scala.collection.immutable.List[String])], org.apache.spark.sql.types.StructType)
或者如果我尝试val df = sc.parallelize(rdd.toSeq).toDF
,我会收到以下错误;
error: value toSeq is not a member of org.apache.spark.rdd.RDD[(BigInt, String, String, BigInt, BigInt, BigInt, BigInt, List[String])]
感谢任何帮助
【问题讨论】:
【参考方案1】:架构只能与RDD[Row]
一起使用。这里使用反射:
sqlContext.createDataFrame(rdd)
您还可以将BigInt
更改为one of the supported types (BigDecimal
?) 或use binary encoder for this field。
【讨论】:
感谢您的评论,我收到了java.lang.UnsupportedOperationException: Schema for type scala.BigInt is not supported
错误以上是关于将包含 BigInt 的 RDD 转换为 Spark Dataframe的主要内容,如果未能解决你的问题,请参考以下文章
070 DStream中的transform和foreachRDD函数