错误“AttributeError:'Py4JError'对象没有属性'message'构建DecisionTreeModel

Posted

技术标签:

【中文标题】错误“AttributeError:\'Py4JError\'对象没有属性\'message\'构建DecisionTreeModel【英文标题】:Error "AttributeError: 'Py4JError' object has no attribute 'message' building DecisionTreeModel错误“AttributeError:'Py4JError'对象没有属性'message'构建DecisionTreeModel 【发布时间】:2017-05-07 19:06:51 【问题描述】:

我正在学习 O'Reilly 的“使用 Spark 进行高级分析”的第 4 章。这本书是用 Scala 编写的,我无法将此代码转换为 Python。

Scala 代码

import org.apache.spark.mllib.linalg._
import org.apache.spark.mllib.regression._
val rawData = sc.textFile("hdfs:///user/ds/covtype.data")
val data = rawData.map  line =>
    val values = line.split(',').map(_.toDouble)
    val featureVector = Vectors.dense(values.init)
    val label = values.last - 1
    LabeledPoint(label, featureVector)

val Array(trainData, cvData, testData) =
  data.randomSplit(Array(0.8, 0.1, 0.1))
trainData.cache()
cvData.cache()
testData.cache()


import org.apache.spark.mllib.evaluation._
import org.apache.spark.mllib.tree._
import org.apache.spark.mllib.tree.model._
import org.apache.spark.rdd._

def getMetrics(model: DecisionTreeModel, data: RDD[LabeledPoint]):
    MulticlassMetrics = 
 val predictionsAndLabels = data.map(example =>
    (model.predict(example.features), example.label)
 )
 new MulticlassMetrics(predictionsAndLabels)

val model = DecisionTree.trainClassifier(
 trainData, 7, Map[Int,Int](), "gini", 4, 100)

val metrics = getMetrics(model, cvData) 
metrics.confusionMatrix

我的 Python 代码

from pyspark.sql.functions import col, split
import pyspark.mllib.linalg as linal
import pyspark.mllib.regression as regre
import pyspark.mllib.evaluation as eva
import pyspark.mllib.tree as tree
import pyspark.rdd as rd

raw_data = sc.textFile("covtype.data")

def fstDecisionTree(line):
    values = list(map(float,line.split(",")))
    featureVector = linal.Vectors.dense(values[:-1])
    label = values[-1]-1
    ret=regre.LabeledPoint(label, featureVector)
    return regre.LabeledPoint(label, featureVector) 

data = raw_data.map(fstDecisionTree)
trainData,cvData,testData=data.randomSplit([0.8,0.1,0.1])
trainData.cache()
cvData.cache()
testData.cache()

def help_lam(model):
 def _help_lam(dataline):
    print(dataline)
    a=dataline.collect()
    return (model.predict(a[1]),a[0])
return _help_lam

def getMetrics(model, data):
    print(type(model),type(data))
    predictionsAndLabels= data.map(help_lam(model))
    return eva.MulticlassMetrics(predictionsAndLabels)

n_targets=7
max_depth=4
max_bin_count=100
model = tree.DecisionTree.trainClassifier(trainData, n_targets, , "gini", max_depth, max_bin_count)

metrics=getMetrics(model,cvData)

当我运行此程序时,当我尝试隐式传递地图迭代时,def help_lam(model) 内部的方法 def _help_lam(dataline) 出现此错误:

AttributeError: 'Py4JError' object has no attribute 'message'

【问题讨论】:

【参考方案1】:

我认为问题出在model.predict 函数中

来自pyspark mllib/tree.py

注意:在 Python 中,predict 目前不能在 RDD 中使用 转变或行动。 而是直接在 RDD 上调用 predict。

你能做的就是像这样直接传递特征向量

>>> rdd = sc.parallelize([[1.0], [0.0]])
>>> model.predict(rdd).collect()
[1.0, 0.0]

编辑:

您的getMetrics 的更新可能是:

def getMetrics(model, data):
    labels = data.map(lambda d: d.label)
    features = data.map(lambda d: d.features)
    predictions = model.predict(features)
    predictionsAndLabels = predictions.zip(labels)
    return eva.MulticlassMetrics(predictionsAndLabels) 

【讨论】:

以上是关于错误“AttributeError:'Py4JError'对象没有属性'message'构建DecisionTreeModel的主要内容,如果未能解决你的问题,请参考以下文章

Informix 错误:发生了语法错误。错误代码:-201

我收到一个错误:“MetaMask - RPC 错误:错误:错误:[ethjs-rpc] rpc 错误与有效负载”

错误精灵错误跟踪器错误

网页打开显示错误500是啥意思

PHP错误处理

PHP的错误处理