Tensorflow 不使用 GPU,发现 xla_gpu 不是 gpu
Posted
技术标签:
【中文标题】Tensorflow 不使用 GPU,发现 xla_gpu 不是 gpu【英文标题】:Tensorflow doesn't use GPU, Finds xla_gpu not gpu 【发布时间】:2020-01-31 00:25:17 【问题描述】:我刚开始探索 AI,从未使用过 Tensorflow,即使 Linux 对我来说也是新手。
我之前安装了 NVIDIA 驱动程序 430。它带有 CUDA 10.1
由于 Tensorflow-gpu 1.14 不支持 CUDA 10.1,我卸载了 CUDA 10.1 并下载了 CUDA 10.0
cuda_10.0.130_410.48_linux.run
安装后我就跑了
nvcc --version
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2018 NVIDIA Corporation
Built on Sat_Aug_25_21:08:01_CDT_2018
Cuda compilation tools, release 10.0, V10.0.130
当我尝试在 Jupyter Notebook 中使用 GPU 时,代码仍然不起作用
import tensorflow as tf
with tf.device('/gpu:0'):
a = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[2, 3], name='a')
b = tf.constant([1.0, 2.0, 3.0, 4.0, 5.0, 6.0], shape=[3, 2], name='b')
c = tf.matmul(a, b)
with tf.Session() as sess:
print (sess.run(c))
错误:
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1355 try:
-> 1356 return fn(*args)
1357 except errors.OpError as e:
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in _run_fn(feed_dict, fetch_list, target_list, options, run_metadata)
1338 # Ensure any changes to the graph are reflected in the runtime.
-> 1339 self._extend_graph()
1340 return self._call_tf_sessionrun(
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in _extend_graph(self)
1373 with self._graph._session_run_lock(): # pylint: disable=protected-access
-> 1374 tf_session.ExtendSession(self._session)
1375
InvalidArgumentError: Cannot assign a device for operation MatMul: node MatMulwas explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:CPU:0, /job:localhost/replica:0/task:0/device:XLA_CPU:0, /job:localhost/replica:0/task:0/device:XLA_GPU:0 ]. Make sure the device specification refers to a valid device.
[[MatMul]]
During handling of the above exception, another exception occurred:
InvalidArgumentError Traceback (most recent call last)
<ipython-input-19-3a5be606bcc9> in <module>
6
7 with tf.Session() as sess:
----> 8 print (sess.run(c))
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in run(self, fetches, feed_dict, options, run_metadata)
948 try:
949 result = self._run(None, fetches, feed_dict, options_ptr,
--> 950 run_metadata_ptr)
951 if run_metadata:
952 proto_data = tf_session.TF_GetBuffer(run_metadata_ptr)
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in _run(self, handle, fetches, feed_dict, options, run_metadata)
1171 if final_fetches or final_targets or (handle and feed_dict_tensor):
1172 results = self._do_run(handle, final_targets, final_fetches,
-> 1173 feed_dict_tensor, options, run_metadata)
1174 else:
1175 results = []
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in _do_run(self, handle, target_list, fetch_list, feed_dict, options, run_metadata)
1348 if handle is None:
1349 return self._do_call(_run_fn, feeds, fetches, targets, options,
-> 1350 run_metadata)
1351 else:
1352 return self._do_call(_prun_fn, handle, feeds, fetches)
~/anaconda3/lib/python3.7/site-packages/tensorflow/python/client/session.py in _do_call(self, fn, *args)
1368 pass
1369 message = error_interpolation.interpolate(message, self._graph)
-> 1370 raise type(e)(node_def, op, message)
1371
1372 def _extend_graph(self):
InvalidArgumentError: Cannot assign a device for operation MatMul: node MatMul (defined at <ipython-input-9-b145a02709f7>:5) was explicitly assigned to /device:GPU:0 but available devices are [ /job:localhost/replica:0/task:0/device:CPU:0, /job:localhost/replica:0/task:0/device:XLA_CPU:0, /job:localhost/replica:0/task:0/device:XLA_GPU:0 ]. Make sure the device specification refers to a valid device.
[[MatMul]]
Errors may have originated from an input operation.
Input Source operations connected to node MatMul:
b (defined at <ipython-input-9-b145a02709f7>:4)
a (defined at <ipython-input-9-b145a02709f7>:3)
但是,如果我从终端用 Python 运行这段代码,它就可以工作。我可以看到输出
[[22. 28.] [49. 64.]]
【问题讨论】:
您是否在与运行终端 python 的环境相同的环境中运行 jupyter 笔记本?看起来您正在笔记本中运行符合 XLA 的 tf。另外,您安装了哪个版本的 CUDNN? 嗨 @MasonCaiby 是的,相同的 conda 环境。如何查看 CUDNN 版本?? 试试这个链接***.com/questions/31326015/… @MasonCaiby 谢谢哥们~!!我跟着那个,现在我可以在 GPU 上运行我的 Tensorflow :) 太好了,我将发布 cmets 作为答案,以便您可以将问题标记为已回答,正如此 stackexchange 问题所建议的那样:meta.stackexchange.com/questions/117251/… 【参考方案1】:您需要确保安装了适当的CUDA
和CuDNN
版本。
CuDNN
版本:How to verify CuDNN installation?
或在 linux 机器上运行 cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2
您可以在此处查看CUDA
版本:xcat.docs
nvcc -V
或通过运行nvidia-smi
在此处阅读xla_gpu
s:tensorflow xla 和此处:github xla_gpu issue
xla 由 tensorflow 制作,比标准 tensorflow 更快。
我不确定为什么没有CuDNN
的CUDA
会调用gpu
s xla_gpu
s。 Nvidia gpus 需要 CUDA 和 CuDNN 才能与 Tensorflow 正常工作,因此看起来 tensorflow 正在尝试使用自己的库在 GPU 上进行计算。但是,我不太确定。
【讨论】:
观看 nvidia-smi 进行实时监控。谢谢梅森:)以上是关于Tensorflow 不使用 GPU,发现 xla_gpu 不是 gpu的主要内容,如果未能解决你的问题,请参考以下文章
TensorFlow 2.0: InvalidArgumentError: device CUDA:0 not supported by XLA service while setup XLA_GPU