在 pyspark 中,如何创建一个数组列,它是两个或多个数组列的总和?

Posted

技术标签:

【中文标题】在 pyspark 中,如何创建一个数组列,它是两个或多个数组列的总和?【英文标题】:In pyspark how to create an array column that is a summation of two or more array columns? 【发布时间】:2021-12-29 14:16:41 【问题描述】:

我的 pyspark 数据框中有几个 array 类型列和 DenseVector 类型列。我想创建新列,这些列是这些列的元素添加。下面是总结问题的代码:

设置:

from pyspark.sql import SparkSession
from pyspark.sql.functions import col
from pyspark.ml.functions import vector_to_array
from pyspark.ml.linalg import VectorUDT, DenseVector
from pyspark.sql.functions import udf, array, lit

spark = SparkSession.builder.getOrCreate()

data = [(1,4),(2,5),(3,6)]

a = spark.createDataFrame(data)

f = udf(lambda x: DenseVector(x), returnType=VectorUDT())

import pyspark.sql.functions as F

@F.udf(returnType=VectorUDT())
def add_cons_dense_col(val):
    return DenseVector(val)

a=a.withColumn('d1', add_cons_dense_col(F.array([F.lit(1.), F.lit(1.)])))
a=a.withColumn('d2', add_cons_dense_col(F.array([F.lit(1.), F.lit(1.)])))
a=a.withColumn('l1', F.array([F.lit(1.), F.lit(1.)]))
a=a.withColumn('l2', F.array([F.lit(1.), F.lit(1.)]))

a.show()
output:
+---+---+---------+---------+----------+----------+
| _1| _2|       d1|       d2|        l1|        l2|
+---+---+---------+---------+----------+----------+
|  1|  4|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]|
|  2|  5|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]|
|  3|  6|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]|
+---+---+---------+---------+----------+----------+

我可以对_1_2执行以下操作,效果相同

a.withColumn('l_sum', a._1+a._2)
a.withColumn('l_sum', a['_1']+a['_2'])
a.withColumn('l_sum', col('_1') + col('_2'))

我希望能够对d1d2l1l2 执行添加操作。但是这三种方法都失败了。我正在寻找按元素添加数组或 DenseVectors:

例如:

a.withColumn('l_sum', a.d1+a.d2).show()
a.withColumn('l_sum', a['d1']+a['d2']).show()
a.withColumn('l_sum', col('d1') + col('d2')).show()

但我明白了:

output:
~/miniconda3/envs/pyspark/lib/python3.9/site-packages/pyspark/sql/dataframe.py in withColumn(self, colName, col)
   2476         if not isinstance(col, Column):
   2477             raise TypeError("col should be Column")
-> 2478         return DataFrame(self._jdf.withColumn(colName, col._jc), self.sql_ctx)
   2479 
   2480     def withColumnRenamed(self, existing, new):

~/miniconda3/envs/pyspark/lib/python3.9/site-packages/py4j/java_gateway.py in __call__(self, *args)
   1307 
   1308         answer = self.gateway_client.send_command(command)
-> 1309         return_value = get_return_value(
   1310             answer, self.gateway_client, self.target_id, self.name)
   1311 

~/miniconda3/envs/pyspark/lib/python3.9/site-packages/pyspark/sql/utils.py in deco(*a, **kw)
    115                 # Hide where the exception came from that shows a non-Pythonic
    116                 # JVM exception message.
--> 117                 raise converted from None
    118             else:
    119                 raise

AnalysisException: cannot resolve '(d1 + d2)' due to data type mismatch: '(d1 + d2)' requires (numeric or interval or interval day to second or interval year to month) type, not struct<type:tinyint,size:int,indices:array<int>,values:array<double>>;
'Project [_1#0L, _2#1L, d1#5, d2#10, l1#15, l2#21, (d1#5 + d2#10) AS l_sum#365]
+- Project [_1#0L, _2#1L, d1#5, d2#10, l1#15, array(1.0, 1.0) AS l2#21]
   +- Project [_1#0L, _2#1L, d1#5, d2#10, array(1.0, 1.0) AS l1#15]
      +- Project [_1#0L, _2#1L, d1#5, add_cons_dense_col(array(1.0, 1.0)) AS d2#10]
         +- Project [_1#0L, _2#1L, add_cons_dense_col(array(1.0, 1.0)) AS d1#5]
            +- LogicalRDD [_1#0L, _2#1L], false

你能帮我创建一个按元素添加数组类型列或 DenseVector 类型列的列

【问题讨论】:

【参考方案1】:

火花 2.4

Spark 并非都允许使用表达式在 Vector 上应用本机操作。因此,需要UDF。 对于数组的元素求和,我们可以使用arrays_zip 将数组压缩在一起,然后应用Higher Order Function - Transform 对压缩后的数组求和。

@F.udf(returnType=VectorUDT())
def sum_vector(v1: VectorUDT, v2: VectorUDT) -> VectorUDT:
    return v1 + v2

(a.withColumn("vector_sum", sum_vector(F.col("d1"), F.col("d2")))
  .withColumn("array_sum", F.expr("transform(arrays_zip(l1, l2), x -> x.l1 + x.l2)"))
).show()

"""
+---+---+---------+---------+----------+----------+----------+----------+
| _1| _2|       d1|       d2|        l1|        l2|vector_sum| array_sum|
+---+---+---------+---------+----------+----------+----------+----------+
|  1|  4|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]| [2.0,2.0]|[2.0, 2.0]|
|  2|  5|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]| [2.0,2.0]|[2.0, 2.0]|
|  3|  6|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]| [2.0,2.0]|[2.0, 2.0]|
+---+---+---------+---------+----------+----------+----------+----------+
"""

Spark 3.1+

在 Spark 3.0 中,引入了 vector_to_arrayarray_to_vector 函数,使用这些函数可以在不使用 UDF 的情况下通过将向量转换为数组来完成向量求和。在 Spark 3.1 中,zip_with 可用于对 2 个数组应用元素明智的操作。

from pyspark.sql import Column
from pyspark.ml.functions import vector_to_array, array_to_vector

def array_sum_expression_builder(c1: Column, c2: Column) -> Column:
    return F.zip_with(c1, c2, lambda x, y: x + y)

result = (a.withColumn("vector_sum",  array_to_vector(
                                array_sum_expression_builder(
                                    vector_to_array(F.col("d1")), 
                                    vector_to_array(F.col("d2")))))
  .withColumn("array_sum",  array_sum_expression_builder(F.col("l1"), F.col("l2")))
)

result.show()

"""
+---+---+---------+---------+----------+----------+----------+----------+
| _1| _2|       d1|       d2|        l1|        l2|vector_sum| array_sum|
+---+---+---------+---------+----------+----------+----------+----------+
|  1|  4|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]| [2.0,2.0]|[2.0, 2.0]|
|  2|  5|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]| [2.0,2.0]|[2.0, 2.0]|
|  3|  6|[1.0,1.0]|[1.0,1.0]|[1.0, 1.0]|[1.0, 1.0]| [2.0,2.0]|[2.0, 2.0]|
+---+---+---------+---------+----------+----------+----------+----------+
"""

result.printSchema()

"""
root
 |-- _1: long (nullable = true)
 |-- _2: long (nullable = true)
 |-- d1: vector (nullable = true)
 |-- d2: vector (nullable = true)
 |-- l1: array (nullable = false)
 |    |-- element: double (containsNull = false)
 |-- l2: array (nullable = false)
 |    |-- element: double (containsNull = false)
 |-- vector_sum: vector (nullable = true)
 |-- array_sum: array (nullable = false)
 |    |-- element: double (containsNull = true)
"""

【讨论】:

【参考方案2】:

对于元素总和,您可以使用:

a = (a
     .withColumn('elementWiseSum', F.expr('transform(l1, (element, index) -> element + element_at(l2, index + 1))'))
    )
a.show()

【讨论】:

以上是关于在 pyspark 中,如何创建一个数组列,它是两个或多个数组列的总和?的主要内容,如果未能解决你的问题,请参考以下文章

如何通过在 PySpark 中选择 struct-array 列的一个字段来提取数组列

PySpark 2.2中数组列的每个元素的子串

如何创建一列数组,其值来自一列并且它们的长度来自pyspark数据帧中的另一列?

如何过滤 PySpark 中数组列中的值?

在 pyspark 中创建列数组

如何使用逗号分隔值拆分列并存储在 PySpark Dataframe 中的数组中?如下所示