编写一个循环来选择变量值的所有组合,在 R 中生成正方程值
Posted
技术标签:
【中文标题】编写一个循环来选择变量值的所有组合,在 R 中生成正方程值【英文标题】:Write a loop to select all combination of variable values generating positive equation values in R 【发布时间】:2019-05-15 01:43:30 【问题描述】:我有以下四个方程 (a,b,c,d),有几个不同的变量 (x,t,v,w,n,f)。我的目标是尝试找到所有变量值集,这些变量值会为方程(a、b、c、d)生成所有正数(和非零数)。常规循环只会遍历生成的序列的每个数字,并系统地检查它是否生成正值。我希望它从每个序列中提取随机数,并与 R 中的其他序列进行测试。 例如 (x=8, t = 2.1,v=13,w=1,n=10,f=1) 是一组可能的组合。
请不要建议分析解决这些问题然后找出值。这些只是我正在处理的方程式的简单表示。我的方程非常复杂,有超过 15 个变量。
#Equations
a <- x * t - 2*x
b <- v - x^2
c <- x - w*t - t*t
d <- (n - f)/t
x <- seq(from = 0.0001, to = 1000, by = 0.1)
t <- seq(from = 0.0001, to = 1000, by = 0.1)
v <- seq(from = 0.0001, to = 1000, by = 0.1)
w <- seq(from = 0.0001, to = 1000, by = 0.1)
n <- seq(from = 0.0001, to = 1000, by = 0.1)
f <- seq(from = 0.0001, to = 1000, by = 0.1)
【问题讨论】:
【参考方案1】:首先,最好将方程式和探测值组织到列表中:
set.seed(1222)
values <- list(x = x, t = t, v = v, w = w, n = n, f = f)
eqs <- list(
a = expression(x * t - 2 * x),
b = expression(v - x^2),
c = expression(x - w*t - t*t),
d = expression((n - f)/t)
)
然后我们可以定义一些样本从每个探针向量中随机抽取:
samples <- 3
values.sampled <- lapply(values, sample, samples)
$x
[1] 642.3001 563.1001 221.3001
$t
[1] 583.9001 279.0001 749.1001
$v
[1] 446.6001 106.7001 0.7001
$w
[1] 636.0001 208.8001 525.5001
$n
[1] 559.8001 28.4001 239.0001
$f
[1] 640.4001 612.5001 790.1001
然后我们可以遍历每个存储的方程,在“采样”环境中评估方程:
results <- sapply(eqs, eval, envir = values.sampled)
a b c d
[1,] 373754.5 -412102.82 -711657.5 -0.1380373
[2,] 155978.8 -316975.02 -135533.2 -2.0935476
[3,] 165333.3 -48973.03 -954581.8 -0.7356827
您可以从那里删除任何小于等于 0 的值:
results[results <= 0] <- NA
【讨论】:
最后一点这行得通吗?resultsfinal <- ifelse(results > 0, results, NULL)
我需要设置.seed,还是像我在问题中所做的那样指定值?
set.seed
只是为了让这个例子可以重现。它将使对sample
的调用始终返回相同的结果。在实践中,您可能不希望这样,但随着分析的完成,它会派上用场,以确保您始终获得相同的结果(即,用于发布)。
这有点令人困惑。没有设置种子,我认为计算机不理解“eval”在做什么。这是我的代码卡住了rextester.com/ZJRHQ60262
在您的链接代码中,您在主环境中创建了一个名为r
的变量,但不要将其复制到列表版本中。所以lapply
使用了r
的未采样副本,它的值太多。这使得results
成为一个列表,其中每个方程的结果具有不同数量的值,不能用索引替换([ ]
)。我的建议是直接在列表中使用seq
,即list(a = seq(1, 10, 1)...
。【参考方案2】:
如果每个独立的值都可以取相同的值(例如seq(from = 0.0001, to = 1000, by = 0.1)
),我们可以更严格地处理这个问题并避免产生重复的可能性。首先,我们创建一个masterFun
,它本质上是您要定义的所有函数的包装器:
masterFun <- function(y)
## y is a vector with 6 values
## y[1] -->> x
## y[2] -->> t
## y[3] -->> v
## y[4] -->> w
## y[5] -->> n
## y[6] -->> f
fA <- function(x, t) x * t - 2*x
fB <- function(v, x) v - x^2
fC <- function(x, w, t) x - w*t - t*t
fD <- function(n, f, t) (n - f)/t
## one can easily filter out negative
## results as @jdobres has done.
c(a = fA(y[1], y[2]), b = fB(y[3], y[1]),
c = fC(y[1], y[4], y[2]), d = fD(y[5], y[6], y[2]))
现在,使用permuteSample
,它能够生成向量的随机排列,然后将任何给定的用户定义函数应用于每个排列,来自RcppAlgos
(我是作者),我们有:
## Not technically the domain, but this variable name
## is concise and very descriptive
domain <- seq(from = 0.0001, to = 1000, by = 0.1)
library(RcppAlgos)
## number of variables ... x, t, v, w, n, f
## ||
## \/
permuteSample(domain, m = 6, repetition = TRUE,
n = 3, seed = 123, FUN = masterFun)
[[1]]
a b c d
218830.316100 -608541.146040 -310624.596670 -1.415869
[[2]]
a b c d
371023.322880 -482662.278860 -731052.643620 1.132836
[[3]]
a b c d
18512.60761001 -12521.71284001 -39722.27696002 -0.09118721
简而言之,底层算法能够生成 nth lexicographical 结果,这允许我们将 1 to "# of total permutations"
的映射应用于排列本身.例如,给定向量1:3
的排列:
permuteGeneral(3, 3)
[,1] [,2] [,3]
[1,] 1 2 3
[2,] 1 3 2
[3,] 2 1 3
[4,] 2 3 1
[5,] 3 1 2
[6,] 3 2 1
我们可以很容易地生成上面的 2nd 和 5th 排列,而无需生成第一个排列或前四个排列:
permuteSample(3, 3, sampleVec = c(2, 5))
[,1] [,2] [,3]
[1,] 1 3 2
[2,] 3 1 2
这使我们能够更可控、更切实地掌握随机样本,因为我们现在可以以更熟悉的方式(即随机数字样本)来思考它们。
如果您真的想查看上述计算中使用了哪些变量,我们只需删除FUN
参数:
permuteSample(domain, m = 6, repetition = TRUE, n = 3, seed = 123)
[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 780.7001 282.3001 951.5001 820.8001 289.1001 688.8001
[2,] 694.8001 536.0001 84.9001 829.2001 757.3001 150.1001
[3,] 114.7001 163.4001 634.4001 80.4001 327.2001 342.1001
【讨论】:
以上是关于编写一个循环来选择变量值的所有组合,在 R 中生成正方程值的主要内容,如果未能解决你的问题,请参考以下文章