调整现有代码和内核代码以执行大量 3x3 矩阵求逆

Posted

技术标签:

【中文标题】调整现有代码和内核代码以执行大量 3x3 矩阵求逆【英文标题】:Adapt existing code and Kernel code to perform a high number of 3x3 matrix inversion 【发布时间】:2019-08-16 21:02:00 【问题描述】:

在上一个问题 (Performing high number of 4x4 matrix inversion - PyCuda) 之后,考虑到 4x4 矩阵的反转,我想做同样的事情,但使用 3x3 矩阵。正如@Robert Crovella 所说,这种变化意味着完全重写。

鉴于下面显示的代码,我尝试测试一些东西,比如用零代替值,但这种方法似乎不起作用。

这是用于大量 4x4 矩阵求逆的代码:

$ cat t10.py
import numpy as np
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
import pycuda.autoinit
# kernel
kernel = SourceModule("""

__device__ unsigned getoff(unsigned &off)
  unsigned ret = off & 0x0F;
  off = off >> 4;
  return ret;


const int block_size = 256;
const unsigned tmsk = 0xFFFFFFFF;
// in-place is acceptable i.e. out == in)
// T = float or double only
typedef float T;
__global__ void inv4x4(const T * __restrict__ in, T * __restrict__ out, const size_t n, const unsigned * __restrict__ pat)

  __shared__ T si[block_size];
  size_t idx = threadIdx.x+blockDim.x*blockIdx.x;
  if (idx < n*16)
    si[threadIdx.x] = in[idx];
    unsigned lane = threadIdx.x & 15;
    unsigned sibase = threadIdx.x & 0x03F0;
    __syncwarp();
    unsigned off = pat[lane];
    T a,b;
    a  = si[sibase + getoff(off)];
    a *= si[sibase + getoff(off)];
    a *= si[sibase + getoff(off)];
    if (!getoff(off)) a = -a;
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    off = pat[lane+16];
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    off = pat[lane+32];
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    b  = si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    b *= si[sibase + getoff(off)];
    if (getoff(off)) a += b;
    else a -=b;
    T det = si[sibase + (lane>>2)]*a;
    det += __shfl_down_sync(tmsk, det, 4, 16); // first add
    det += __shfl_down_sync(tmsk, det, 8, 16); // second add
    det =  __shfl_sync(tmsk, det, 0, 16); // broadcast
    out[idx] = a / det;
  


""")
# python function for inverting 4x4 matrices
# n should be an even number
def gpuinv4x4(inp, n):
    # internal constants not to be modified
    hpat = ( 0x0EB51FA5, 0x1EB10FA1, 0x0E711F61, 0x1A710B61, 0x1EB40FA4, 0x0EB01FA0, 0x1E700F60, 0x0A701B60, 0x0DB41F94, 0x1DB00F90, 0x0D701F50, 0x19700B50, 0x1DA40E94, 0x0DA01E90, 0x1D600E50, 0x09601A50, 0x1E790F69, 0x0E391F29, 0x1E350F25, 0x0A351B25, 0x0E781F68, 0x1E380F28, 0x0E341F24, 0x1A340B24, 0x1D780F58, 0x0D381F18, 0x1D340F14, 0x09341B14, 0x0D681E58, 0x1D280E18, 0x0D241E14, 0x19240A14, 0x0A7D1B6D, 0x1A3D0B2D, 0x063D172D, 0x16390729, 0x1A7C0B6C, 0x0A3C1B2C, 0x163C072C, 0x06381728, 0x097C1B5C, 0x193C0B1C, 0x053C171C, 0x15380718, 0x196C0A5C, 0x092C1A1C, 0x152C061C, 0x05281618)
    # Convert parameters into numpy array
    inpd = np.array(inp, dtype=np.float32)
    hpatd = np.array(hpat, dtype=np.uint32)
    output = np.empty((n*16), dtype= np.float32)
    # Get kernel function
    matinv4x4 = kernel.get_function("inv4x4")
    # Define block, grid and compute
    blockDim = (256,1,1) # do not change
    gridDim = ((n/16)+1,1,1)
    # Kernel function
    matinv4x4 (
        cuda.In(inpd), cuda.Out(output), np.uint64(n), cuda.In(hpatd),
        block=blockDim, grid=gridDim)
    return output
#example/test case
inp = (1.0, 1.0, 1.0, 0.0, 0.0, 3.0, 1.0, 2.0, 2.0, 3.0, 1.0, 0.0, 1.0, 0.0, 2.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0)
n = 2
result = gpuinv4x4(inp, n)
print(result.reshape(2,4,4))
$ python t10.py

[[-3.   -0.5   1.5   1.  ]
  [ 1.    0.25 -0.25 -0.5 ]
  [ 3.    0.25 -1.25 -0.5 ]
  [-3.   -0.    1.    1.  ]]

[[ 1.    0.    0.    0.  ]
  [ 0.    1.    0.    0.  ]
  [ 0.    0.    1.    0.  ]
  [ 0.    0.    0.    1.  ]]

我期望相同的行为,除了我不再使用 4x4 矩阵而是使用 3x3 矩阵。

如何调整上面的代码以使用 3x3 矩阵求逆?

更新 1

这里是我所做的修改。

我已修改尺寸并使用@Robert Crovella (https://ardoris.wordpress.com/2008/07/18/general-formula-for-the-inverse-of-a-3x3-matrix/) 提供的链接中的直接公式。下面修改代码:

import numpy as np
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
import pycuda.autoinit


 # kernel of 3x3 inversion
kernel_3x3 = SourceModule("""

    // in-place is acceptable i.e. out == in)
    // T = float or double only

typedef float T;
__global__ void inv3x3(const T * __restrict__ in, T * __restrict__ out, const size_t n, const unsigned * __restrict__ pat)

  size_t ix = threadIdx.x;
  size_t idx = ix + blockDim.x*blockIdx.x;
  if (ix < n*9)
    T det = in[0+idx]*(in[4+idx]*in[8+idx]-in[7+idx]*in[5+idx]) - in[1+idx]*(in[3+idx]*in[8+idx]-in[6+idx]*in[5+idx]) + in[2+idx]*(in[3+idx]*in[7+idx]-in[6+idx]*in[4+idx]);
    out[0+idx] = (in[4+idx]*in[8+idx]-in[7+idx]*in[5+idx])/det;
    out[1+idx] = (in[2+idx]*in[7+idx]-in[1+idx]*in[8+idx])/det;
    out[2+idx] = (in[1+idx]*in[5+idx]-in[2+idx]*in[4+idx])/det;
    out[3+idx] = (in[6+idx]*in[5+idx]-in[3+idx]*in[8+idx])/det;
    out[4+idx] = (in[0+idx]*in[8+idx]-in[2+idx]*in[6+idx])/det;
    out[5+idx] = (in[2+idx]*in[3+idx]-in[0+idx]*in[5+idx])/det;
    out[6+idx] = (in[3+idx]*in[7+idx]-in[4+idx]*in[6+idx])/det;
    out[7+idx] = (in[1+idx]*in[6+idx]-in[0+idx]*in[7+idx])/det;
    out[8+idx] = (in[0+idx]*in[4+idx]-in[1+idx]*in[3+idx])/det;
    __syncwarp(); 
  


""")

def gpuinv3x3 (inp, n):
# internal constants not to be modified
  hpat = ( 0x0EB51FA5, 0x1EB10FA1, 0x0E711F61, 0x1A710B61, 0x1EB40FA4, 0x0EB01FA0, 0x1E700F60, 0x0A701B60, 0x0DB41F94, 0x1DB00F90, 0x0D701F50, 0x19700B50, 0x1DA40E94, 0x0DA01E90, 0x1D600E50, 0x09601A50, 0x1E790F69, 0x0E391F29, 0x1E350F25, 0x0A351B25, 0x0E781F68, 0x1E380F28, 0x0E341F24, 0x1A340B24, 0x1D780F58, 0x0D381F18, 0x1D340F14, 0x09341B14, 0x0D681E58, 0x1D280E18, 0x0D241E14, 0x19240A14, 0x0A7D1B6D, 0x1A3D0B2D, 0x063D172D, 0x16390729, 0x1A7C0B6C, 0x0A3C1B2C, 0x163C072C, 0x06381728, 0x097C1B5C, 0x193C0B1C, 0x053C171C, 0x15380718, 0x196C0A5C, 0x092C1A1C, 0x152C061C, 0x05281618)
# Convert parameters into numpy array
  inpd = np.array(inp, dtype=np.float32)
  hpatd = np.array(hpat, dtype=np.uint32)
  output = np.empty((n*9), dtype= np.float32)
  # Get kernel function
  matinv3x3 = kernel_3x3.get_function("inv3x3")
  # Define block, grid and compute
  blockDim = (81,1,1) # do not change
  gridDim = ((n/9)+1,1,1)
  # Kernel function
  matinv3x3 (
      cuda.In(inpd), cuda.Out(output), np.uint64(n), cuda.In(hpatd),
      block=blockDim, grid=gridDim)
  return output
#example/test case
inp = (1.0, 1.0, 1.0, 0.0, 0.0, 3.0, 1.0, 2.0, 2.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)
n = 2
result = gpuinv3x3(inp, n)
print(result.reshape(2,3,3))

第一个矩阵被正确反转但不是第二个(单位矩阵的单位矩阵为逆):

[[[ 2.         -0.         -1.        ]
  [-1.         -0.33333334  1.        ]
  [-0.          0.33333334 -0.        ]]

 [[ 1.         -0.5        -0.        ]
  [       -inf  1.         -1.        ]
  [        nan         nan  1.        ]]]

所以,这个问题似乎不是来自内核代码,而是批量大小或与全局一维数组的维度类似的东西(在我的代码中,您可以看到格式化为 18 个元素的一维数组的 2 个 3x3 矩阵(inp = (1.0, 1.0, 1.0, 0.0, 0.0, 3.0, 1.0, 2.0, 2.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)))。

这段代码有什么问题?尤其是第二个矩阵的不良反演问题。最后一点,奇数组大小并不意味着 GPU 处理存在问题?

【问题讨论】:

您是否考虑过添加零会使矩阵奇异而无法求逆的可能性? @talonmies :你说得对,我不能添加一个或多个行/列为零,因为行列式将为空,因此矩阵不可逆......如何处理这个零填充? 你没有。零填充在数学上是不可能的。重写。 此代码需要重写。没有简单的更改使其适用于 3x3 矩阵求逆。如果您需要反转许多不同大小的矩阵,那么咬紧牙关并为您希望从cublas 使用的任何函数创建一个通用绑定可能会更聪明。如果您只想进行类似于此处的固定功能代码策略的 3x3 矩阵求逆,您可以使用 this 作为起点。不是完整的描述,只是一个起点。 @RobertCrovella。我遵循了您给我的链接中的公式。我得到了第一个矩阵的有效反转,但不是第二个。如果你能看看我的UPDATE1,那就没问题了。我怀疑表示要反转的不同矩阵的一维全局数组需要考虑一个错误的维度值。问候 【参考方案1】:

这个答案在答案布局和计算方法/内核设计方面都将紧跟my answer on the 4x4 invert question。公式描述为here。

首先,和以前一样,我们将展示一个 CUDA C++ 版本并与 cublas 进行比较:

$ cat t432.cu
#include <iostream>
#include <cublas_v2.h>
#include <cstdlib>
// 3x3 matrix inversion
// https://***.com/questions/1148309/inverting-a-4x4-matrix
// https://ardoris.wordpress.com/2008/07/18/general-formula-for-the-inverse-of-a-3x3-matrix/
// 9 threads per matrix to invert
// 32 matrices per 288 thread block

const unsigned block_size = 288;
typedef double mt;

#define cudaCheckErrors(msg) \
    do  \
        cudaError_t __err = cudaGetLastError(); \
        if (__err != cudaSuccess)  \
            fprintf(stderr, "Fatal error: %s (%s at %s:%d)\n", \
                msg, cudaGetErrorString(__err), \
                __FILE__, __LINE__); \
            fprintf(stderr, "*** FAILED - ABORTING\n"); \
            exit(1); \
         \
     while (0)

#include <time.h>
#include <sys/time.h>
#define USECPSEC 1000000ULL

long long dtime_usec(unsigned long long start)

  timeval tv;
  gettimeofday(&tv, 0);
  return ((tv.tv_sec*USECPSEC)+tv.tv_usec)-start;


__device__ unsigned pat[9];
const unsigned hpat[9] = 0x07584, 0x08172, 0x04251, 0x08365, 0x06280, 0x05032, 0x06473, 0x07061, 0x03140;


__device__ unsigned getoff(unsigned &off)
  unsigned ret = off & 0x0F;
  off >>= 4;
  return ret;


// in-place is acceptable i.e. out == in)
// T = float or double only
template <typename T>
__global__ void inv3x3(const T * __restrict__ in, T * __restrict__ out, const size_t n)

  __shared__ T si[block_size];
  size_t idx = threadIdx.x+blockDim.x*blockIdx.x;
  T det = 1;
  if (idx < n*9)
    det = in[idx];
  unsigned sibase = (threadIdx.x / 9)*9;
  unsigned lane = threadIdx.x - sibase; // cheaper modulo
  si[threadIdx.x] = det;
  __syncthreads();
  unsigned off = pat[lane];
  T a  = si[sibase + getoff(off)];
  a   *= si[sibase + getoff(off)];
  T b  = si[sibase + getoff(off)];
  b   *= si[sibase + getoff(off)];
  a -= b;
  __syncthreads();
  if (lane == 0) si[sibase+3] = a;
  if (lane == 3) si[sibase+4] = a;
  if (lane == 6) si[sibase+5] = a;
  __syncthreads();
  det =  si[sibase]*si[sibase+3]+si[sibase+1]*si[sibase+4]+si[sibase+2]*si[sibase+5];
  if (idx < n*9)
    out[idx] = a / det;


size_t nr = 2048;
int main(int argc, char *argv[])
  if (argc > 1) nr = atoi(argv[1]);


  const mt m2[] = 1.0, 1.0, 1.0, 0.0, 0.0, 3.0, 1.0, 2.0, 2.0;
  const mt i2[] = 2.0, 0.0, -1.0, -1.0, -0.33333334, 1.0, 0.0, 0.33333334,  0.0;
  const mt m1[] = 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0;
  const mt i1[] = 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0;

  mt *h_d, *d_d;
  h_d = (mt *)malloc(nr*9*sizeof(mt));
  cudaMalloc(&d_d, nr*9*sizeof(mt));
  cudaMemcpyToSymbol(pat, hpat, 9*sizeof(unsigned));
  for (int i = 0; i < nr/2; i++)
    memcpy(h_d+i*2*9, m1, sizeof(m1));
    memcpy(h_d+i*2*9+9, m2, sizeof(m2));
  cudaMemcpy(d_d, h_d, nr*9*sizeof(mt), cudaMemcpyHostToDevice);
  long long t = dtime_usec(0);
  inv3x3<<<((nr*9)/block_size)+1, block_size>>>(d_d, d_d, nr);
  cudaDeviceSynchronize();
  t = dtime_usec(t);
  cudaMemcpy(h_d, d_d, nr*9*sizeof(mt), cudaMemcpyDeviceToHost);
  for (int i = 0; i < 2; i++)
    for (int j = 0; j < 9; j++) std::cout << h_d[i*9 + j] << ",";
    std::cout << std::endl;
    for (int j = 0; j < 9; j++) std::cout << ((i==0)?i1[j]:i2[j]) << ",";
    std::cout << std::endl;
  std::cout << "kernel time: " << t << " microseconds" << std::endl;
  cudaError_t err = cudaGetLastError();
  if (err != cudaSuccess) std::cout << cudaGetErrorString(err) << std::endl;
  //cublas
  for (int i = 0; i < nr/2; i++)
    memcpy(h_d+i*2*9, m1, sizeof(m1));
    memcpy(h_d+i*2*9+9, m2, sizeof(m2));
  cudaMemcpy(d_d, h_d, nr*9*sizeof(mt), cudaMemcpyHostToDevice);
  cublasHandle_t h;
  cublasStatus_t cs = cublasCreate(&h);
  if (cs != CUBLAS_STATUS_SUCCESS) std::cout << "cublas create error" << std::endl;
  mt **A, **Ai, *Aid, **Ap, **Aip;
  A  = (mt **)malloc(nr*sizeof(mt *));
  Ai = (mt **)malloc(nr*sizeof(mt *));
  cudaMalloc(&Aid, nr*9*sizeof(mt));
  cudaMalloc(&Ap,  nr*sizeof(mt *));
  cudaMalloc(&Aip, nr*sizeof(mt *));
  for (int i = 0; i < nr; i++) A[i]  =  d_d + 9*i;
  for (int i = 0; i < nr; i++) Ai[i] =  Aid + 9*i;
  cudaMemcpy(Ap, A, nr*sizeof(mt *), cudaMemcpyHostToDevice);
  cudaMemcpy(Aip, Ai, nr*sizeof(mt *), cudaMemcpyHostToDevice);
  int *info;
  cudaMalloc(&info, nr*sizeof(int));
  t = dtime_usec(0);
  cs = cublasDmatinvBatched(h, 3,  Ap, 3, Aip, 3, info, nr);
  if (cs != CUBLAS_STATUS_SUCCESS) std::cout << "cublas matinv error" << std::endl;
  cudaDeviceSynchronize();
  t = dtime_usec(t);
  cudaMemcpy(h_d, Aid, nr*9*sizeof(mt), cudaMemcpyDeviceToHost);
  for (int i = 0; i < 2; i++)
    for (int j = 0; j < 9; j++) std::cout << h_d[i*9 + j] << ",";
    std::cout << std::endl;
    for (int j = 0; j < 9; j++) std::cout << ((i==0)?i1[j]:i2[j]) << ",";
    std::cout << std::endl;
  std::cout << "cublas time: " << t << " microseconds" << std::endl;
  err = cudaGetLastError();
  if (err != cudaSuccess) std::cout << cudaGetErrorString(err) << std::endl;
  return 0;

$ nvcc -o t432 t432.cu -lcublas
$ ./t432
1,0,0,0,1,0,0,0,1,
1,0,0,0,1,0,0,0,1,
2,-0,-1,-1,-0.333333,1,-0,0.333333,-0,
2,0,-1,-1,-0.333333,1,0,0.333333,0,
kernel time: 59 microseconds
1,0,0,0,1,0,0,0,1,
1,0,0,0,1,0,0,0,1,
2,0,-1,-1,-0.333333,1,0,0.333333,0,
2,0,-1,-1,-0.333333,1,0,0.333333,0,
cublas time: 68 microseconds
$

因此,对于这个 2048 矩阵测试用例、CUDA 10.0、Tesla P100、linux,这可能比 cublas 稍微快一点,但速度并不快。

和上一个答案类似,这里是一个简化的(只有2个矩阵)pycuda测试用例:

$ cat t14.py
import numpy as np
# import matplotlib.pyplot as plt
import pycuda.driver as cuda
from pycuda.compiler import SourceModule
import pycuda.autoinit
# kernel
kernel = SourceModule("""

__device__ unsigned getoff(unsigned &off)
  unsigned ret = off & 0x0F;
  off >>= 4;
  return ret;


// in-place is acceptable i.e. out == in)
// T = float or double only
const int block_size = 288;
typedef double T; // *** can set to float or double
__global__ void inv3x3(const T * __restrict__ in, T * __restrict__ out, const size_t n, const unsigned * __restrict__ pat)

  __shared__ T si[block_size];
  size_t idx = threadIdx.x+blockDim.x*blockIdx.x;
  T det = 1;
  if (idx < n*9)
    det = in[idx];
  unsigned sibase = (threadIdx.x / 9)*9;
  unsigned lane = threadIdx.x - sibase; // cheaper modulo
  si[threadIdx.x] = det;
  __syncthreads();
  unsigned off = pat[lane];
  T a  = si[sibase + getoff(off)];
  a   *= si[sibase + getoff(off)];
  T b  = si[sibase + getoff(off)];
  b   *= si[sibase + getoff(off)];
  a -= b;
  __syncthreads();
  if (lane == 0) si[sibase+3] = a;
  if (lane == 3) si[sibase+4] = a;
  if (lane == 6) si[sibase+5] = a;
  __syncthreads();
  det =  si[sibase]*si[sibase+3]+si[sibase+1]*si[sibase+4]+si[sibase+2]*si[sibase+5];
  if (idx < n*9)
    out[idx] = a / det;


""")
# host code
def gpuinv3x3(inp, n):
    # internal constants not to be modified
    hpat = (0x07584, 0x08172, 0x04251, 0x08365, 0x06280, 0x05032, 0x06473, 0x07061, 0x03140)
    # Convert parameters into numpy array
    # *** change next line between float32 and float64 to match float or double
    inpd = np.array(inp, dtype=np.float64)
    hpatd = np.array(hpat, dtype=np.uint32)
    # *** change next line between float32 and float64 to match float or double
    output = np.empty((n*9), dtype= np.float64)
    # Get kernel function
    matinv3x3 = kernel.get_function("inv3x3")
    # Define block, grid and compute
    blockDim = (288,1,1) # do not change
    gridDim = ((n/32)+1,1,1)
    # Kernel function
    matinv3x3 (
        cuda.In(inpd), cuda.Out(output), np.uint64(n), cuda.In(hpatd),
        block=blockDim, grid=gridDim)
    return output
inp = (1.0, 1.0, 1.0, 0.0, 0.0, 3.0, 1.0, 2.0, 2.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0)
n = 2
result = gpuinv3x3(inp, n)
print(result.reshape(2,3,3))
$ python t14.py
[[[ 2.         -0.         -1.        ]
  [-1.         -0.33333333  1.        ]
  [-0.          0.33333333 -0.        ]]

 [[ 1.          0.          0.        ]
  [ 0.          1.          0.        ]
  [ 0.          0.          1.        ]]]
$

上面恰好在pycuda中使用double,即float64。在 pycuda 中将其更改为 floatfloat32 涉及更改与 this answer 中描述的相同的 3 行。

【讨论】:

谢谢,我稍后会问你一些关于你的内核代码的解释,因为我对 OpenCL 有概念,但对 Cuda 没有真正的概念,即使两者相似。问候 您好罗伯特,您的方法还有一个问题:***.com/questions/55466093/… 对此进行了解释。欢迎任何想法,谢谢。 这段代码现在被广泛描述here。

以上是关于调整现有代码和内核代码以执行大量 3x3 矩阵求逆的主要内容,如果未能解决你的问题,请参考以下文章

是否可以使用 SIMD 指令进行 3x3 矩阵求逆?

(Gauss-Jordan)高斯消元法求逆矩阵(含C/C++实现代码)

没有 Numpy 的矩阵求逆

矩阵求逆

使用 cublasSgetriBatched 在 gpu 上求逆两个矩阵

为啥我的 strassen 算法不适用于 3x3 矩阵?