2个纬度/经度点(坐标)列表之间的地理/地理空间距离
Posted
技术标签:
【中文标题】2个纬度/经度点(坐标)列表之间的地理/地理空间距离【英文标题】:Geographic / geospatial distance between 2 lists of lat/lon points (coordinates) 【发布时间】:2017-11-05 08:13:44 【问题描述】:我有 2 个列表(list1
、list2
),其中包含各个位置的纬度/经度。一个列表 (list2
) 具有 list1
没有的位置名称。
我也想要 list1 中每个点的近似位置。所以我想在list1
中取一个点,尝试在list2
中寻找最近的点并取那个位置。我重复list1
中的每一点。它还需要距离(以米为单位)和点的索引(以list1
为单位),因此我可以围绕它构建一些业务规则 - 基本上这些是应该添加到list1
(near_dist
, indx
)。
我正在使用gdist
函数,但我无法让它与数据框输入一起使用。
示例输入列表:
list1 <- data.frame(longitude = c(80.15998, 72.89125, 77.65032, 77.60599,
72.88120, 76.65460, 72.88232, 77.49186,
72.82228, 72.88871),
latitude = c(12.90524, 19.08120, 12.97238, 12.90927,
19.08225, 12.81447, 19.08241, 13.00984,
18.99347, 19.07990))
list2 <- data.frame(longitude = c(72.89537, 77.65094, 73.95325, 72.96746,
77.65058, 77.66715, 77.64214, 77.58415,
77.76180, 76.65460),
latitude = c(19.07726, 13.03902, 18.50330, 19.16764,
12.90871, 13.01693, 13.00954, 12.92079,
13.02212, 12.81447),
locality = c("A", "A", "B", "B", "C", "C", "C", "D", "D", "E"))
【问题讨论】:
【参考方案1】:要使用纬度/经度坐标计算两点之间的地理距离,您可以使用几个公式。包geosphere
有distCosine
、distHaversine
、distVincentySphere
和distVincentyEllipsoid
用于计算距离。其中,distVincentyEllipsoid
被认为是最准确的,但计算量比其他的要高。
使用这些函数之一,您可以制作距离矩阵。然后,基于该矩阵,您可以使用 which.min
根据最短距离分配 locality
名称,使用 min
分配相应的距离(请参阅答案的最后一部分),如下所示:
library(geosphere)
# create distance matrix
mat <- distm(list1[,c('longitude','latitude')], list2[,c('longitude','latitude')], fun=distVincentyEllipsoid)
# assign the name to the point in list1 based on shortest distance in the matrix
list1$locality <- list2$locality[max.col(-mat)]
这给出了:
> list1 longitude latitude locality 1 80.15998 12.90524 D 2 72.89125 19.08120 A 3 77.65032 12.97238 C 4 77.60599 12.90927 D 5 72.88120 19.08225 A 6 76.65460 12.81447 E 7 72.88232 19.08241 A 8 77.49186 13.00984 D 9 72.82228 18.99347 A 10 72.88871 19.07990 A
另一种可能性是根据list2
中locality
s的平均经度和纬度值分配locality
:
library(dplyr)
list2a <- list2 %>% group_by(locality) %>% summarise_each(funs(mean)) %>% ungroup()
mat2 <- distm(list1[,c('longitude','latitude')], list2a[,c('longitude','latitude')], fun=distVincentyEllipsoid)
list1 <- list1 %>% mutate(locality2 = list2a$locality[max.col(-mat2)])
或data.table
:
library(data.table)
list2a <- setDT(list2)[,lapply(.SD, mean), by=locality]
mat2 <- distm(setDT(list1)[,.(longitude,latitude)], list2a[,.(longitude,latitude)], fun=distVincentyEllipsoid)
list1[, locality2 := list2a$locality[max.col(-mat2)] ]
这给出了:
> list1 longitude latitude locality locality2 1 80.15998 12.90524 D D 2 72.89125 19.08120 A B 3 77.65032 12.97238 C C 4 77.60599 12.90927 D C 5 72.88120 19.08225 A B 6 76.65460 12.81447 E E 7 72.88232 19.08241 A B 8 77.49186 13.00984 D C 9 72.82228 18.99347 A B 10 72.88871 19.07990 A B
如您所见,这在大多数情况下(十分之七)会导致另一个分配的locality
。
您可以添加距离:
list1$near_dist <- apply(mat2, 1, min)
或使用max.col
的另一种方法(很可能更快):
list1$near_dist <- mat2[matrix(c(1:10, max.col(-mat2)), ncol = 2)]
# or using dplyr
list1 <- list1 %>% mutate(near_dist = mat2[matrix(c(1:10, max.col(-mat2)), ncol = 2)])
# or using data.table (if not already a data.table, convert it with 'setDT(list1)' )
list1[, near_dist := mat2[matrix(c(1:10, max.col(-mat2)), ncol = 2)] ]
结果:
> list1 longitude latitude locality locality2 near_dist 1: 80.15998 12.90524 D D 269966.8970 2: 72.89125 19.08120 A B 65820.2047 3: 77.65032 12.97238 C C 739.1885 4: 77.60599 12.90927 D C 9209.8165 5: 72.88120 19.08225 A B 66832.7223 6: 76.65460 12.81447 E E 0.0000 7: 72.88232 19.08241 A B 66732.3127 8: 77.49186 13.00984 D C 17855.3083 9: 72.82228 18.99347 A B 69456.3382 10: 72.88871 19.07990 A B 66004.9900
【讨论】:
【参考方案2】:感谢 Martin Haringa 提供的解决方案,当您需要通过遍历 Mark Needham's blog 上的数据框来执行此功能时,让这种方式变得更容易
library(dplyr)
library(geosphere)
df %>%
rowwise() %>%
mutate(newcolumn_distance = distHaversine(c(df$long1, df$lat1),
c(df$long2, df$lat2)))
我分别在来自真实世界数据集的大样本上使用两个函数 distm 和 distHaversine 进行了测试,distHaversine 似乎比 distm 函数快得多。我很惊讶,因为我认为这两者只是两种格式的相同功能。
【讨论】:
博客链接已损坏 对不起@JeffParker,现在应该修好了! @AlexanderKielland 谢谢。使用 hasrsine 函数的矢量化版本更容易,例如: df %>% mutate(newcolumn_distance = spatialrisk::haversine(lat1, long1, lat2, long2)) 好@mharinga!当我有机会时,我将不得不测试一下!我有一个庞大的数据集,肯定需要一个矢量化选项来提高吞吐量!【参考方案3】:我在下面添加了一个使用 spatialrisk 包的解决方案。此包中的关键函数是用 C++ (Rcpp) 编写的,因此速度非常快。
函数 spatialrisk::points_in_circle() 从中心点计算半径内的观测值。请注意,距离是使用 Haversine 公式计算的。由于输出的每个元素都是一个数据框,因此 purrr::map_dfr 用于将它们行绑定在一起:
ans <- purrr::map2_dfr(list1$longitude,
list1$latitude,
~spatialrisk::points_in_circle(list2, .x, .y,
lon = longitude,
lat = latitude,
radius = 2000000)[1,])
cbind(list1, ans)
longitude latitude longitude latitude locality distance_m
1 80.15998 12.90524 77.76180 13.02212 D 260484.0591
2 72.89125 19.08120 72.89537 19.07726 A 616.6369
3 77.65032 12.97238 77.64214 13.00954 C 4230.7216
4 77.60599 12.90927 77.58415 12.92079 D 2694.4566
5 72.88120 19.08225 72.89537 19.07726 A 1590.8723
6 76.65460 12.81447 76.65460 12.81447 E 0.0000
7 72.88232 19.08241 72.89537 19.07726 A 1487.8028
8 77.49186 13.00984 77.58415 12.92079 D 14089.1051
9 72.82228 18.99347 72.89537 19.07726 A 12089.6454
10 72.88871 19.07990 72.89537 19.07726 A 759.8012
【讨论】:
以上是关于2个纬度/经度点(坐标)列表之间的地理/地理空间距离的主要内容,如果未能解决你的问题,请参考以下文章
如何使用 cartopy 将显示坐标转换为地理坐标(纬度、经度)?
JavaScript 地理定位:检查距 2 gps 坐标的距离